著者
松野 哲男 巽 好幸 島 伸和 鈴木 桂子 市原 寛 清杉 孝司 中岡 礼奈 清水 賢 佐野 守 井和丸 光 両角 春寿 杉岡 裕子 中東 和夫 山本 揚二朗 林 和輝 西村 公宏 古川 優和 堀内 美咲 仲田 大地 中村 崚登 廣瀬 時 瀬戸 康友 大重 厚博 滝沢 秀明 千葉 達朗 小平 秀一
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2018年大会
巻号頁・発行日
2018-03-14

We started integrated marine investigations of Kikai Caldera with T/S Fukae-maru of Kobe University on October, 2016. Aims of our investigations are to reveal the structure of the caldera, the existence of magma reservoir, and to understand the mechanism of catastrophic caldera-forming eruption at 7.3 ka and a potential for a future catastrophic eruption. We conducted multi-beam echo sounder mapping, multi-channel seismic reflection (MCS) surveys, remotely operated vehicle (ROV) observations, rock sampling by dredging and diving, geophysical sub-seafloor imaging with ocean bottom seismometers, electro-magnetometers (OBEMs), some of which equip absolute pressure gauge, ocean-bottom magnetometers, and surface geomagnetic surveys.The first finding of our investigations is lines of evidence for creation of a giant rhyolite lava dome (~32 km3) after the caldera collapse. This dome is still active as water column anomalies accompanied by bubbling from its surface are observed by the water column mapping. Chemical characteristics of dome-forming rhyolites akin to those of presently active small volcanic cones are different from those of supereruption. The voluminous post-caldera activity is thus not caused simply by squeezing the remnant of syn-caldera magma but may tap a magma system that has evolved both chemically and physically since the 7.3-ka supereruption.We have been conducting integrated analyses of our data set, and have planned the fourth research cruise with T/S Fukae-maru on March, 2018, consisting of MCS survey, ROV observation, OBEM with absolute pressure gauge observation, and bathymetric and surface geomagnetic survey. We will introduce results of the data analyses and the upcoming cruise in the presentation.
著者
清杉 孝司 巽 好幸 鈴木 桂子 金子 克哉 中岡 礼奈 山本 由弦 羽生 毅 清水 賢 島 伸和 松野 哲男 菊池 瞭平 山口 寛登
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

Catastrophic caldera-forming eruptions that discharge more than 40 km3 of Si–rich magma as pyroclastics are rare but extremely hazardous events (eruption magnitude >7). Estimating the eruption volume of pyroclastics and the magma discharge rate in caldera–cycle is essential in evaluating the risk and cause of catastrophic caldera–forming eruptions. For this reason, we took sediment cores with Hydraulic Piston Coring System (HPCS) and Short HPCS (S-HPCS) of D/V Chikyu at Kikai volcano in January 11–14, 2020. Kikai volcano (Kikai caldera) is located about 45 km off southern Kyushu Island, Japan. Except two islands (Satsuma Iwo-Jima Island and Take-Shima Island) on the northern part of the caldera rim, most of the caldera structure is under the sea. At Kikai volcano, three ignimbrites are known; the 140 ka Koabi ignimbrite, the 95 ka Nagase ignimbrite, and the latest 7.3 ka Koya ignimbrite.Sediments were recovered from 5 sites about 4.3 km off the northeastern side of Take-Shima Island. Each drilling site was separated by 10–20 m from any other site. The sediment was not consolidated. Bioturbation was not observed. The sediment sequence, from the top of the cores, consists of gravel unit, ill-sorted lapilli unit, reddish tephra unit, sandy silt unit, and white tephra unit. The sedimentary facies of these sediments is as follows.Gravel unit: The presence of this unit in the upper part of the sequence is suggested by gravels which fell in the drilling holes and recovered with the sediments of the lower sequence. The gravels are consist of white tuffaceous rock, obsidian, gray volcanic rock, reddish altered volcanic rock, gray pumice and altered pumice. They are angular to sub-angular in shape and varying in size up to 5 cm in diameter.Ill-sorted lapilli unit: This deposit consists of ill-sorted lapilli size light yellow colored pumices and lithics of dark volcanic rock, gray volcanic rock, and obsidian. The maximum grain size of the pumice is more than 5 cm, whereas the maximum grain size of the lithic is about 4 cm. The abundance of the pumice component varies with depth. The thickness of the unit is more than 7 m at the drilling sites. The color of the pumice suggests that this unit may be a secondary deposit of underlying Koya ignimbrite deposit.Reddish tephra unit: It consists of layers (maximum thickness at least 40 cm) of slightly reddish to orange ill-sorted pumice lapilli and thin layers (~1 cm thick) of relatively well-sorted ash. The thickness of the deposit is more than 5 m at the drilling sites. The characteristic color of pumice suggests that this unit is the deposit of Koya ignimbrite. Formation of relatively thin layers of lapilli and ash may be due to the deposition under the sea.Sandy silt unit: It consists of very fine fragments of black volcanic rock. The sediment contains small fragments (~5 mm) of sea shells and other organic materials. Foraminifars were also contained in this deposit. The thickness of this unit is at least 20.36 m.White tephra unit: This deposit mainly consists of ill-sorted white pumice lapilli and relatively well-sorted ash. The maximum pumice size is at least 11 cm. The thickness of the deposit is at least 30 m. The deposit is characterized by the presence of crystals of quartz, which is known as a remarkable feature of the Nagase ignimbrite deposit to distinguish it from the other tephra at Kikai volcano. Especially, the middle part of the recovered Nagase ignimbrite deposit (63–64 m below the seafloor) shows unique sedimentary face: it consists of only crystals of quartz (<2 mm in size), orthopyroxene and clinopyroxene (<1 mm in size), and magnetite (<2 mm in size). Formation of the sedimentary face may be due to the deposition of hot ignimbrite under the sea.Description of these sedimentary units is essential to distinguish the ignimbrite deposits and understand their flow behavior in the sea. We will show the detail of these sedimentary facies in the presentation.
著者
島 伸和 伊勢崎 修弘 兵頭 政幸 山崎 俊嗣
出版者
神戸大学
雑誌
基盤研究(B)
巻号頁・発行日
2000

本研究では、海底電位差磁力計を新たに開発し、背弧海盆であり海底拡大がはっきりしているマリアナトラフをターゲットにして、マリアナトラフの詳細なテクトニクスの解明と、マリアナトラフ付近での電気伝導度構造の推定を行なった.開発した海底電位差磁力計は、すでに実用段階に入っており、その大きさとしては世界最小レベルであり、機動力という点でも優れている.また、この電極には、FILLOUXタイプの電極を採用して、このタイプの電極を国内で安定した性能で作る体制を整えた.海上での観測で得られた海底地形、重力、地磁気データを解析することにより、次のように詳細なテクトニクスをあきらかにした.(1)北緯16〜18度付近は、約6Maに海底拡大を開始した.拡大速度(片側、以下同じ)は20mm/年程度と遅い.(2)北緯16度以北では、拡大開始時の拡大軸の走向は北北西-南南東であった.つまり、トラフ北部では西マリアナ海嶺の走向にほぼ平行であるのに対し、南へ行くに従い西マリアナ海嶺とは斜行するようになる.トラフ中部及び北部では、現在の拡大軸の走向は南北に近い.(3)北緯14度以南のトラフ南部では、海底拡大は3Ma頃開始し、拡大速度は35mm/年程度と中部・北部よりやや速い.中軸谷が存在せず、地形的には東太平洋海膨型の速い拡大の特徴を持つ.(4)北部マリアナトラフにおいては、リフフティング/海底拡大の境界は北緯22度付近にある.北緯20〜22度では約4Maに拡大を開始した.1年間設置して観測した海底電位差磁力計によるデータの初期的な解析結果より、マリアナ島弧火山下には、70kmの深さに部分溶融と見られる電気伝導度の高い領域があることがわかった.また、マリアナトラフ下には、数10kmのリソスフェアに対応すると考えられる低電気伝導度層が存在することを明らかにした.