著者
岸野 力 武田 剛
出版者
一般社団法人 日本体育学会
雑誌
日本体育学会大会予稿集 第68回(2017) (ISSN:24241946)
巻号頁・発行日
pp.211_1, 2017 (Released:2018-02-15)

競泳トレーニングにおいて抵抗体やゴムチューブによる牽引泳をスプリントトレーニングとして導入されるようになってきた。しかしながら実際のトレーニング現場ではチューブでの牽引力を日常的に評価することは少ない。そこで本研究は牽引力とスプリントパフォーマンスの関係性を明らかにし、スプリントトレーニングとしての牽引泳の意義とゴムチューブを介して得られる牽引力のトレーニング指標としての活用法を提案することを目的とした。対象者は日常的に水泳のトレーニングを十分に積む男性15名とした。試技は25mの屋内プール(25m×7レーン 水深1.1~1.2m)にて25mクロール泳タイム測定と牽引泳パワー測定に分けて行った。牽引泳パワー測定は牽引泳8秒と12秒休息×8セットのトレーニング内容で行った。牽引力の計測にはデジタルフォースゲージ(FGPX-100日本電産シンポ社製)にゴムチューブを装着し、クロール泳中の牽引力を測定した。牽引力の最大値、平均値と力積を求め、スプリント泳速度との相関関係を検討した。結果として最大泳速度と最大牽引力との間に有意な相関が認められ、25mの最大泳速度と牽引泳での最大牽引力には高い関係性があることが明らかとなった。
著者
岸野 力 武田 剛
出版者
一般社団法人 日本体育学会
雑誌
体育学研究 (ISSN:04846710)
巻号頁・発行日
vol.63, no.2, pp.659-672, 2018-12-10 (Released:2018-12-20)
参考文献数
17

The purpose of this study was to investigate the relationship between towing force during tethered swimming with different high-intensity interval training (HIIT) protocols using an elastic cord and front crawl swimming velocity, and to suggest the use of towing force parameters based on the results. Ten college male competitive swimmers participated in the experiments, which involved towing force measurements during front crawl swimming using 3 protocols of HIIT and time trials over 25m, 50m, 100m, and 200m. The 3 HIIT protocols were 8 sets of tethered 20s trials with 10s rest time intervals (“TABATA protocol”, 20―10s protocol), 8 sets of tethered 8s trials with 12s rest time intervals (8―12s protocol), and 2 sessions of 5 sets of tethered 5s trials with 10s rest time intervals (5―10s protocol). The swimmers were connected to a load cell using an elastic cord to measure the towing force during tethered swimming. The times taken for the 25m, 50m, 100m, and 200m distances were recorded by counting the number of frames in the video footages. The critical speed (CS) was calculated using a regression formula from the distances and the times required for the time trials. Simple linear regression analyses were performed to investigate the relationship between the towing force and mean velocity from the front crawl time-trials. The maximum towing force during all of the HIIT protocols was significantly correlated with the mean velocity for all distances and CS, and the regression formula was significant (p<0.05). Mean towing force during all of the HIIT protocols was significantly correlated with the mean velocity for 200m and CS, and the regression formula was significant (p<0.05). Logarithmic approximation of the time-force curves (peak and mean forces in each set) during HIIT was valid, and the y-intercept (towing force) of the approximation formula were significantly and negatively correlated with the mean velocity for all distances (25―200m and CS) and all HIIT protocols, the regression formula also being significant (p<0.05). From the viewpoint of feedback, the mean towing force during HIIT was useful for evaluating the workout effort during HIIT during tethered swimming using an elastic cord. The Y-intercept of the approximation formula from the maximal or mean forces during HIIT was best for evaluating the workout effort, although arithmetic processing of the logarithmic approximation will be required.