著者
平野 正徳 南 賢太郎 今城 健太郎
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会第二種研究会資料 (ISSN:24365556)
巻号頁・発行日
vol.2023, no.FIN-030, pp.51-57, 2023-03-04 (Released:2023-03-04)

深層学習と価格時系列シミュレーションを用いてオプションのヘッジ戦略を学習するDeep Hedgingは,取引手数料などを考慮に入れたより現実的な取引戦略を立てることができるため,近年脚光を浴びている.しかしながら,その学習において活用される原資産価格のシミュレーターは,Heston過程などの特定の価格過程を使用することが多い.そこで,本研究においては,特定の価格過程を用いることなく,Deep Hedgingの取引戦略の学習を可能にする手法を提案する.提案手法では,架空の任意の価格過程を生成する生成器とDeep Hedgingが敵対的に学習を行う.提案手法を用いた場合,一切の価格時系列を与えることなく,通常のDeep Hedgingとほぼ同等の性能のヘッジを行えることを示した.
著者
平野 正徳 和泉 潔 松島 裕康 坂地 泰紀 島田 尚
出版者
人工知能学会
雑誌
2019年度 人工知能学会全国大会(第33回)
巻号頁・発行日
2019-04-08

本研究は,金融市場における高頻度取引(HFT)のマーケットメイク(MM)戦略と呼ばれる注文行動について分析を行うことを目的とした.株式会社日本取引所グループより提供を受けた,東京証券取引所の注文データを使用し,仮想サーバーの名寄せを前処理として行なった.その結果得られた,取引主体別の注文データを,いくつか指標を使うことで,クラスター分析を行い,高頻度マーケットメイク戦略(HFT-MM)を取っている取引主体を抽出し,それらの注文が,直近約定価格から何ティック離れたところに置かれているかについて計算した.その結果,HFT-MMとされる行動主体は,直近約定価格からかなり離れた位置(5-10ティック)のところにも注文を置いていることが明らかになった.この結果は,HFT-MMとされる取引主体が,マーケットメイク戦略だけではなく,他の戦略も採用している可能性を示唆しており,さらに確認すると,価格が急変した際には,不安定化効果を引き起こす可能性をも示唆していることがわかった.
著者
平野 正徳 和泉 潔 松島 裕康 坂地 泰紀 島田 尚
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第33回全国大会(2019)
巻号頁・発行日
pp.2O1J1304, 2019 (Released:2019-06-01)

本研究は,金融市場における高頻度取引(HFT)のマーケットメイク(MM)戦略と呼ばれる注文行動について分析を行うことを目的とした.株式会社日本取引所グループより提供を受けた,東京証券取引所の注文データを使用し,仮想サーバーの名寄せを前処理として行なった.その結果得られた,取引主体別の注文データを,いくつか指標を使うことで,クラスター分析を行い,高頻度マーケットメイク戦略(HFT-MM)を取っている取引主体を抽出し,それらの注文が,直近約定価格から何ティック離れたところに置かれているかについて計算した.その結果,HFT-MMとされる行動主体は,直近約定価格からかなり離れた位置(5-10ティック)のところにも注文を置いていることが明らかになった.この結果は,HFT-MMとされる取引主体が,マーケットメイク戦略だけではなく,他の戦略も採用している可能性を示唆しており,さらに確認すると,価格が急変した際には,不安定化効果を引き起こす可能性をも示唆していることがわかった.
著者
平野 正徳 今城 健太郎 南 賢太郎 島田 拓弥
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会第二種研究会資料 (ISSN:24365556)
巻号頁・発行日
vol.2022, no.FIN-028, pp.27, 2022-03-12 (Released:2022-10-21)

Deep Hedging, which uses deep learning and price time-series simulations to optimize option hedging, has recently been in the spotlight because it enables more realistic hedging that can take into account frictions such as transaction fees (imperfect market). However, the situation of hedging an option by other options has never been addressed by deep hedging because of its simulation difficulties. In that situation, pricing for tradable options should also be performed via deep hedging in simulations for realizing imperfect market simulations, which has required unrealizable enormous computational resources because of the nested architecture of deep hedging. Thus, in this study, we proposed a new deep-hedging mechanism for learning hedging strategies under such a nested situation. As a result, we showed better hedging via proposed deep hedging with multiple tradable options.
著者
若杉 亮 和泉 潔 平野 正徳
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第35回全国大会(2021)
巻号頁・発行日
pp.2I3GS5b04, 2021 (Released:2021-06-14)

電力の自由化に伴い,工場などの大口の電力需要を持つ事業者は,電力調達の際に市場価格や需給の変動など不確定要素を新たに考慮する必要が出てきた.本研究では,価格高騰時のコスト削減や需給調節などのために需要側がとりうる手段の1つであるデマンドレスポンス(DR)について,電力市場におけるその効果を分析した.具体的にはまず,標準的な工場の用途別電力消費量時系列データから,主成分分析により特性を抽出し,これを基に工場の用途別電力消費モデルを構築した.次に,この工場エージェントに加え電力供給エージェントと需要エージェントが参加する,JEPX(日本卸電力取引市場)の1日前市場を模したマルチエージェントモデルを用いて,シミュレーション実験を行った.実験では,工場のDRシナリオについてそれぞれ市場に対するスケールを変化させ,費用対効果の観点で2つの評価指標によってDRの効果を分析した.実験結果から,工場規模が大きいほど,自身のマーケットインパクトによりDR効果は大きくなることが確認できた.一方で工場やDR規模の大小によらずDR効果がばらつくことがあり,DR効果の要因が複合的である可能性が示唆された.