著者
佐藤 考一 朝吹 香菜子 角倉 英明 角田 誠 森田 芳朗
出版者
日本建築学会
雑誌
日本建築学会計画系論文集 (ISSN:13404210)
巻号頁・発行日
vol.82, no.733, pp.827-835, 2017 (Released:2017-03-30)
参考文献数
6

The scope of education on building technology is not limited to construction supervision for architects and construction work management for constructors. In fact, when the 2008's reform of the Architect Act introduced the eight categories of designated lectures in accreditation of architect license in Japan, one of them was Building production, not Construction work. However, architectural courses of technical colleges and universities do not necessarily have the common understanding on education of building production. This paper is the third report of educational report series to facilitate richer education of building production in technical colleges and universities. By a review to nine textbooks of building production and a questionnaire survey to two hundred forty two departments of architecture, which the former two reports showed in detail, we made out the reference material for syllabus on lectures of building production. That contains a list of ninety-three educational headings of building production, two tables of three lecture types related to educational headings or construction business fields, variations of each lecture type on procedure, and instances of typical lecture procedure. This paper aims to evaluate the reference material for syllabus, and to discuss the future lectures and texts of building production. A new questionnaire survey to ninety-six departments of architecture has made the followings clear. Firstly, the reference material for syllabus is useful for revising syllabi on lectures of building production. Especially by the list of educational headings of building production, almost lecturers of all lecture types will check whether their lectures have enough educational contents or not. Moreover, the lecturers of lecture type II are able to add educational issues to their lectures based on the table of construction business fields, and the lecturers of type III are able to build up a new lecture scenario by referring to the variations on lecture procedure. Secondary, educational issues how to use existing buildings will become more important in future lectures of building production. Since two thirds of lecturers intend to add these issues in their lectures, that includes thirty percent of lecturers of type I although they scarcely give a lecture on the use of existing buildings. There is another approach to enrich the education on the use of existing buildings. That is to start a new series of lectures. In this case, lectures are necessary to have educational issues on renovation, facility management and real estate at least. Finally, future texts of building production should contain figures and tables that are suitable for projection in lectures. According to our questionnaire survey, lecturers of building production in technical colleges and universities point out luck of such educational materials. On the other hand, researches on building production have shown their results by various diagrams, which represent relations of construction subjects or processes of construction site works. In order to increase educational effectiveness, future texts are necessary to develop much simpler diagrams than the originals made by researches of building production, and to collect them in themselves.
著者
三田 智文 角田 誠 船津 高志
出版者
東京大学
雑誌
基盤研究(C)
巻号頁・発行日
2005

近年、分析化学におけるダウンサイズ化として、半導体微細加工技術を利用したマイクロ化学分析システムが注目されている。本研究では、微量生体成分の高感度分離検出系を組み込んだ液体クロマトグラフィー(LC)のマイクロチップ集積化を目的とした。最初に、高感度検出を目指して、ベンゾフラザン骨格を有する水溶性の蛍光標識試薬を開発した。水溶性の試薬はマイクロチップ上での分離において問題となる基板への吸着を防ぐことができると考えられる。さらに、核酸類似骨格を有する二環性化合物を合成しその蛍光特性を検討し、デオキシシチジン誘導体が強い蛍光性を有することを明らかにした。今後この骨格を有する蛍光標識試薬を開発する予定である。また、開発した試薬とLCを用いてペプチド類、微量生体成分および薬物の分析法を開発した。これら開発した分析法はマイクロチップ上に集積化可能である。マイクロチップLCの検出系として質量分析も有力視されている。そこで、質量分析用標識試薬を開発し、生体成分の分析法に適用した。本法もマイクロチップ上に集積化可能である。また、モノリス型キャピラリーカラムおよびチップ上でのモノリスカラムの作成に取り組み、分離系の微量化を検討した。さらに、チップ上でのLC用レーザー蛍光顕微検出法の開発に取り組んだ。溶液中の蛍光検出対象物質が対物レンズから近い距離に存在すれば、蛍光を十分に集光できるため高感度に検出できる。そこで流路の厚さが5μm程度以下の部分を作成し、この部分で検出を行うことにより高感度検出を可能にした。今後、これらの方法をマイクロチップ上に集積化する予定である。