著者
梶谷 義雄 山本 広祐 豊田 康嗣 中島 正人
出版者
公益社団法人 土木学会
雑誌
土木学会論文集F4(建設マネジメント) (ISSN:21856605)
巻号頁・発行日
vol.67, no.1, pp.1-13, 2011 (Released:2011-01-20)
参考文献数
55

本研究では,水力発電施設の災害や事故による社会的影響を対象に,その分析手法や分析結果の効果的な活用方法について検討する.まず,過去の水力発電施設の被害事例の調査や分析を通じて,将来的に懸念される社会的影響発生のシナリオを構築する.次いで,過去事例にも散見される水力発電施設からの溢水が発生するシナリオを対象に,その定量的な分析手法について検討を行う.最後に,事例分析として,仮想的な水力発電施設や地域の人口・経済データを対象に,導水路損壊による社会的影響評価を実施し,被害額や発電による便益の観点から,災害対策優先度などの水力発電施設の維持管理戦略への反映可能性について考察した結果を報告する.
著者
津旨 大輔 坪野 考樹 三角 和弘 立田 穣 豊田 康嗣 恩田 裕一 青山 道夫
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2018年大会
巻号頁・発行日
2018-03-14

A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant following the Great East Japan Earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean by two major pathways: direct release from the accident site and atmospheric deposition. A 6 years, regional-scale simulation of 137Cs activity in the ocean offshore of Fukushima was carried out by the Regional Ocean Model System (ROMS), the sources of radioactivity being direct release, atmospheric deposition, the inflow of 137Cs deposited into the ocean by atmospheric deposition outside the domain of the model, and river discharges.Direct releases of 137Cs were estimated for 6 years after the accident by comparing simulated results and measured activities adjacent to the accident site. In addition, river discharge rates 137Cs were calculated by multiplication between river flow rate and 137Cs activity. River flow rates were simulated by a water circulation analysis model for each catchment. Temporal change of 137Cs activity both of particle and dissolved forms were measured at 8 rivers and normalized by the inventory of 137Cs in each catchment. 137Cs activity in other 4 rivers were estimated by the normalized 137Cs activity and inventories of catchments. After 2013, direct release and river discharge were dominant for input of 137Cs to the ocean. Apparent half-life of direct release and river discharge of were estimated to be about 1 year and 2 years, respectively.Apparent half-life of measured 137Cs activity adjacent to 1F NPP was about 1 year, on the other hand, the ones in the coastal zone away from 1F NPP were about 2 years after 2013. Apparent half-life of simulated results with river discharge was in good agreement with the one in the coastal zone away from 1F NPP. River discharge affected on temporal change of 137Cs activity there. On the other hands, simulated 137Cs activities with river input were one order of magnitudes smaller than observations. This underestimation suggests modifications of river input process, such as estuary mixing process, removal from particle form 137Cs and inputs from small rivers around the 1F NPP.