著者
中村 佳正 今井 潤 中山 功 代田 典久 近藤 弘一 岡崎 龍太郎
出版者
京都大学
雑誌
基盤研究(B)
巻号頁・発行日
2000

Caratheodoryの補間問題などに登場するPerronの連分数についてはChebyshev連分数のqdアルゴリズムに相当する計算量O(N^2)の連分数展開算法は知られていなかった.これに対して,まず,単位円周上の直交多項式の理論を基礎として,直交多項式の3項漸化式をLax表示とする新しい可積分系Schurフローを導出し,その差分化によって離散時間Schurフローの漸化式を与えた.さらに,離散時間SchurフローによるO(N^2)の計算量のPerron連分数展開アルゴリズムと代数方程式の零点計算アルゴリズムを定式化した.これにより,1)古典直交多項式-Chebyshev連分数-Toda方程式,2)単位円周上の直交多項式-Perronの連分数-Schurフローという対応図式が完成した.Thronの連分数の計算アルゴリズムの開発にも取り組んだ.まず,双直交多項式の3項間漸化式をLax表示とする可積分系である相対論戸田方程式に注目し,その可積分な離散化によって離散時間相対論戸田方程式のタウ関数解を見い出した.さらに,このタウ関数解の漸化式を用いて,Thronの連分数をO(N^3)の計算量で計算する連分数展開アルゴリズムを定式化した.従来,Thronの連分数については離散可積分系に基づく算法は知られていなかった.通常のFGアルゴリズムでは分母が零となり計算できない場合でも本アルゴリズムによって連分数が求められることもわかった.また,第2種Painleve方程式PIIの解のBacklund変換をLax対の両立条件としで表し,さらに,Lax対のひとつを直交多項式の3項間漸化式とみて,直交多項式に関連した連分数の係数がBacklund変換により相互に代数的に結ばれることを示した.この連分数がAiry関数のLaplace変換の連分数展開を与えることを証明した.
著者
近藤 弘一 笹田 昇平 小幡 雅彦 岩崎 雅史 中村 佳正
出版者
一般社団法人情報処理学会
雑誌
情報処理学会論文誌. コンピューティングシステム (ISSN:03875806)
巻号頁・発行日
vol.48, no.8, pp.216-225, 2007-05-15
参考文献数
13

本論文では非可逆画像圧縮におけるKakarala-Oeunbona (KO)の画像分解アルゴリズムを考える.KO分解では行列の特異値分解(SVD)を利用した主成分分析が行われ,2次元解散ウェーブレット変換と同様な多重解像度解析が可能である.左特異ベクトルをフィルタとして利用することが特徴である.一般に特異値の近接度が高いとき,SVD数値計算アルゴリズムによって特異ベクトルが高精度に求められるとは限らない.本論文ではKO分解における特異値の近接度を低減させるアルゴリズムを提案する.元画像に対してランダム模様のふちどりを追加することで特異値分布を変化させる.数値実験によりその効果を示し,圧縮画像の誤差評価を行う.さらには,フィルタ行列の量子化について議論する.