著者
内田 昌希 浦山 玲菜 一色 恭徳 八巻 努 前野 拓也 上田 秀雄 近藤 誠一 夏目 秀視
出版者
一般社団法人日本医療薬学会
雑誌
医療薬学 (ISSN:1346342X)
巻号頁・発行日
vol.40, no.2, pp.109-116, 2014-02-10 (Released:2015-02-10)
参考文献数
19

In the present study, 0.5% povidone-iodine solution was prepared aseptically using various commercial products of 10% povidone-iodine solution, and the stability of 0.5% povidone-iodine solution after storage under various conditions was evaluated. Furthermore, a comparison between various commercial products was also performed. As a result, the stability of available iodine in 0.5% povidone-iodine solution was found to be affected by light, temperature and the sealability of the container. Of the storage methods investigated in the present study, the method of keeping the highest available iodine concentration was to store the povidone-iodine solution in a closed container under a light-shielded state at 4°C. The term of validity was 3 or 4 weeks in Hisiiode disinfectant solution or other products (Isodine® solution, Popiyodon solution, Negmin® solution, Popyral disinfectant solution and Iodine M disinfectant solution), respectively in storage in a closed container under a light-unshielded state at room temperature, which was the usual method of a disinfectant, from the results of a stability test of available iodine in 0.5% povidone-iodine solution. It was confirmed that bactericidal activity was maintained until at least 4 weeks after preparation in every commercial product from the results of a bactericidal activity test on the solution in the usual storage method (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger, Candida albicans). Of the 0.5% povidone-iodine solution investigated in the present study, Popiyodon solution and Negmin® solution kept the available iodine comparatively stable under each storage condition.
著者
井口 毅裕 近藤 誠一 久恒 和仁
出版者
JAPANESE SOCIETY FOR BACTERIOLOGY
雑誌
日本細菌学雑誌 (ISSN:00214930)
巻号頁・発行日
vol.44, no.6, pp.805-812, 1989
被引用文献数
1

アユ,ウナギ,サケ科魚類のビブリオ属細菌感染症の原因菌の1つとして,<i>Vibrio anguillarum</i>が知られ,本菌は生化学的・血清学的性状の相違により,A, B, Cの3種に型別されている。今回,血清型Bに属する<i>V. anguillarum</i> PT514株のO抗原リポ多糖(LPS)を取り上げ,その化学的性状,特に分子構築について検討した。LPSの全多糖体画分(degraded polysaccharide: DPS)からSephadex G-50ゲルクロマトグラフィーによつて分画したO抗原多糖鎖部分は多量のグルコース(Glc)を含み,PT514株LPSの多糖鎖はグルコースホモポリマーを基本骨格とすることが示唆された。また,LPSの弱酸加水分解によつて多量のフルクトース(Fru)と4-アミノ-4, 6-ジデオキシーグルコース(4-amino-4, 6-dideoxy-Glc)が遊離され,PT514株LPSは他の血清型菌株のLPSとは異なる性状を持つことが示された。多くのグラム陰性菌LPSのコア部分の共通構成糖である2-keto-3-deoxy-octonate (KDO)は常法では検出されず,他のビブリオ科細菌と同様,強酸加水分解によつて初めてKDOのリン酸化誘導体が検出され,リン酸化KDOは広くビブリオ科細菌LPSに分布することが示された。
著者
近藤 誠一 山本 章博
出版者
人工知能学会
雑誌
人工知能学会全国大会論文集 (ISSN:13479881)
巻号頁・発行日
vol.27, 2013

We present a method to solve Inductive Logic Programming (ILP) problems by using an Integer Programming (IP) solver. An ILP problem is to learn a set of clauses in first-order logic from positive examples, negative examples, and background knowledge. In our method, we transform a given ILP problem to an IP problem, and then solves the IP problem by using an IP solver. We carry out experiments on classification tasks and show how our method works.