著者
野部 達夫 鵜飼 真成
出版者
公益社団法人 空気調和・衛生工学会
雑誌
空気調和・衛生工学会大会 学術講演論文集 平成28年度大会(鹿児島)学術講演論文集 第3巻 空調システム 編 (ISSN:18803806)
巻号頁・発行日
pp.21-24, 2016 (Released:2017-10-31)

次世代空調システム実現に向けた「8つのトライ」では、従来固定的に捉えられていた建築の主人公である「ヒト」を、様々な環境に適応する動的な存在として捉えることで、ヒューマンファクターを「空調への活用可能な人間の特性及び潜在的能力」と定義した。本報では、ヒューマンファクターの要素や実際の空調への適用事例について報告する。
著者
佐藤 文秋 佐々木 邦治 安田 健一 鈴木 岳志 野部 達夫
出版者
公益社団法人 空気調和・衛生工学会
雑誌
空気調和・衛生工学会 論文集 (ISSN:0385275X)
巻号頁・発行日
vol.43, no.254, pp.1-9, 2018

<p>熱源の省エネルギーには負荷に併せた最適化が必要なため実態に近い負荷を予測することが重要である。地域冷暖房は供給先負荷熱量が計測されており、集積された多数の供給施設を含み平均化された負荷実態を把握することができる。本研究は大阪、名古屋、東京に供給する既存の地域冷暖房の供給先負荷の実績を分析することで、負荷予測の参考となる負荷の実態と特性を検討し、効率向上のために負荷持続曲線による熱源の部分負荷運転を最小とする容量分割検討と低負荷時の効率向上および低負荷を集積し高効率とする地域冷暖房の効果について検討を行うものである。 </p>
著者
市川 勇太 斉藤 詩織 鵜飼 真成 山田 正也 野部 達夫
出版者
公益社団法人 空気調和・衛生工学会
雑誌
空気調和・衛生工学会大会 学術講演論文集
巻号頁・発行日
vol.2014, pp.145-148, 2014

<p>本報では,「暑すぎる」・「寒すぎる」を分けて申告を行う非受容申告装置2ch型オストラコンを用いて,中間期における空調機器の運転切り替え時の非受容申告の調査を行った。また,執務者の在席を判断するため在席検知装置を同時に使用した。調査結果より非受容申告の発生因子を推察し,運転切り替えに伴う申告の特性について考察を行う。</p>
著者
伊藤 清 川島 実 荒井 義人 高橋 満博 村上 宏次 野部 達夫
出版者
日本建築学会
雑誌
日本建築学会環境系論文集 (ISSN:13480685)
巻号頁・発行日
vol.81, no.723, pp.447-455, 2016
被引用文献数
1

Energy conservation technology has been in high demand in relation to efforts to realize (net) zero-energy buildings (ZEBs). Ceiling radiant cooling panel systems represent a key energy-conservation technology which can yield high efficiency, since it uses moderately cold water (1618°C), offers integration with other energy-efficient strategies, such as indirect evaporative cooling or ground source heat pumps, and does not require energy to propel a fan to remove the cooling load. Furthermore, a radiant ceiling cooling panel system provides greater comfort to occupants because it does not produce a draught. Therefore, ceiling radiant cooling panel systems can offer both reductions in cooling energy consumption and a comfortable environment for occupants. However, there are several problems with applying a ceiling radiant cooling system in Japan. Firstly, there is limited data about the cooling performance of such systems because few have been constructed in Japan. For this reason, it is important to determine the cooling performance of radiant ceiling panels. Secondly, radiant ceiling panels have limited cooling performance, so it is necessary to consider a special system to remove the perimeter load. Thirdly, an outdoor air-conditioning system is needed to provide outdoor air to occupants. The objective of this paper is to present an outline of the proposed system, results of the thermal performance tests in an experimental facility, and the operational performance in a building to which the proposed system is applied. The proposed system consists of ceiling radiant cooling panels, perimeter chilled beams, and an outdoor-air supply system. The ceiling radiant cooling panels remove the interior cooling load. The perimeter chilled beams remove the perimeter cooling load. The outdoor-air supply system has a personal floor diffuser, a perimeter linear diffuser and a return-air inlet near the window top. The return-air inlet removes the hot air from the window to remove the perimeter load efficiently. An experimental facility for the proposed system was constructed, and thermal performance tests were performed. The results show a vertical temperature differential of less than 0.5°C, and the perimeter chilled beam can remove the peak summer cooling load appropriately. The cooling capacity of the ceiling radiant cooling panels and perimeter chilled beams are approximately 80 W/m2 and 120 W/m2 respectively under conditions whereby the difference in temperature between the water input and output is 9.0°C. Measurement of the system was performed in the actual building to which the system was applied. The results show that the ceiling radiant cooling panels and chilled beams can be controlled to remove varying cooling loads. The cooling capacity of the ceiling radiant cooling panels and chilled beams in the actual building proved almost equal to the experimental data. Thus, it is demonstrated that the proposed system can remove the cooling load as expected.
著者
伊藤 清 川島 実 荒井 義人 高橋 満博 村上 宏次 野部 達夫
出版者
日本建築学会
雑誌
日本建築学会環境系論文集 (ISSN:13480685)
巻号頁・発行日
vol.81, no.723, pp.447-455, 2016
被引用文献数
1

&nbsp;Energy conservation technology has been in high demand in relation to efforts to realize (net) zero-energy buildings (ZEBs). Ceiling radiant cooling panel systems represent a key energy-conservation technology which can yield high efficiency, since it uses moderately cold water (16-18&deg;C), offers integration with other energy-efficient strategies, such as indirect evaporative cooling or ground source heat pumps, and does not require energy to propel a fan to remove the cooling load. Furthermore, a radiant ceiling cooling panel system provides greater comfort to occupants because it does not produce a draught. Therefore, ceiling radiant cooling panel systems can offer both reductions in cooling energy consumption and a comfortable environment for occupants.<br>&nbsp;However, there are several problems with applying a ceiling radiant cooling system in Japan. Firstly, there is limited data about the cooling performance of such systems because few have been constructed in Japan. For this reason, it is important to determine the cooling performance of radiant ceiling panels. Secondly, radiant ceiling panels have limited cooling performance, so it is necessary to consider a special system to remove the perimeter load. Thirdly, an outdoor air-conditioning system is needed to provide outdoor air to occupants. The objective of this paper is to present an outline of the proposed system, results of the thermal performance tests in an experimental facility, and the operational performance in a building to which the proposed system is applied.<br>&nbsp;The proposed system consists of ceiling radiant cooling panels, perimeter chilled beams, and an outdoor-air supply system. The ceiling radiant cooling panels remove the interior cooling load. The perimeter chilled beams remove the perimeter cooling load. The outdoor-air supply system has a personal floor diffuser, a perimeter linear diffuser and a return-air inlet near the window top. The return-air inlet removes the hot air from the window to remove the perimeter load efficiently.<br>&nbsp;An experimental facility for the proposed system was constructed, and thermal performance tests were performed. The results show a vertical temperature differential of less than 0.5&deg;C, and the perimeter chilled beam can remove the peak summer cooling load appropriately. The cooling capacity of the ceiling radiant cooling panels and perimeter chilled beams are approximately 80 W/m<sup>2</sup> and 120 W/m<sup>2</sup> respectively under conditions whereby the difference in temperature between the water input and output is 9.0&deg;C.<br>&nbsp;Measurement of the system was performed in the actual building to which the system was applied. The results show that the ceiling radiant cooling panels and chilled beams can be controlled to remove varying cooling loads. The cooling capacity of the ceiling radiant cooling panels and chilled beams in the actual building proved almost equal to the experimental data. Thus, it is demonstrated that the proposed system can remove the cooling load as expected.