- 著者
-
侯 寧
西名 大作
杉田 宗
姜 叡
大石 洋之
金田一 清香
清水 晶浩
- 出版者
- 日本建築学会
- 雑誌
- 日本建築学会環境系論文集 (ISSN:13480685)
- 巻号頁・発行日
- vol.86, no.785, pp.670-679, 2021-07-30 (Released:2021-07-30)
- 参考文献数
- 8
- 被引用文献数
-
3
The presentation technology about architectural design has been developed in recent years. Virtual Reality as one of the newest method which was born from the modern technology, has been used at practical design. In addition, some of the universities had set up VR laboratories for design education. Compared to the traditional method using 2D drawings and models for presentation, VR will be expected to understand the space more easily without specialized knowledge, and it will be more useful for improving the designers’ ability. Therefore, in order to grasp the designers’ awareness about the applicability of VR Space, we conducted a hearing survey with 12 university professors in Chugoku region who worked in the field of architectural design or design education. According to the results, many of the professors thought “Scale feeling” was “the ability to measure the distance with the eyes”, and they had negative viewpoints about to learn “Scale feeling” in VR space, such as “It is difficult to understand the distance in VR Space” or “Drawing by hand is more useful to nurture the scale feeling than VR”. Therefore, this research was focused on the “Scale feeling”, and conducted an experiment to verify the effectiveness of VR by comparing the learning effect about “Scale feeling” in “VR Space” with “Real Space”. The procedure of this experiment, first, for grasping the original “Scale feeling” of subjects, the subjects were asked to answer the length of 15 objects in Test Space. Then, the subjects were divided into two groups to learn “Scale feeling” in two types of learning spaces. One group learned in “VR Space” and another group learned in “Real Space”. After learning, the subjects came back to “Test Space” and answered the length of 15 objects as the same manner at first. The difference between the “Answered length” and “Actual length” in “Test Space” was defined as the “Inaccuracy”. Finally, we compared the learning effects by the average and the standard deviation in “Inaccuracy” between the two groups. The degree of “Inaccuracy” reduction was similar. Therefore, the “Scale feeling” can be developed in VR space as same as Real space. Although, in “VR space”, the objects which have no actual shape have a larger standard deviation of the “Inaccuracy” than “Real Space”, we considered that it’s more difficult to grasp the distance between objects without shape in “VR space”. For the future research, we will consider in more detail based on the visual characteristics of the learning method.