著者
Shinya KOBAYASHI Yukinari OTA Yayoi HARADA Ayataka EBITA Masami MORIYA Hirokatsu ONODA Kazutoshi ONOGI Hirotaka KAMAHORI Chiaki KOBAYASHI Hirokazu ENDO Kengo MIYAOKA Kiyotoshi TAKAHASHI
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.93, no.1, pp.5-48, 2015 (Released:2015-03-18)
参考文献数
128
被引用文献数
213 3128

The Japan Meteorological Agency (JMA) conducted the second Japanese global atmospheric reanalysis, called the Japanese 55-year Reanalysis or JRA-55. It covers the period from 1958, when regular radiosonde observations began on a global basis. JRA-55 is the first comprehensive reanalysis that has covered the last half-century since the European Centre for Medium-Range Weather Forecasts 45-year Reanalysis (ERA-40), and is the first one to apply four-dimensional variational analysis to this period. The main objectives of JRA-55 were to address issues found in previous reanalyses and to produce a comprehensive atmospheric dataset suitable for studying multidecadal variability and climate change. This paper describes the observations, data assimilation system, and forecast model used to produce JRA-55 as well as the basic characteristics of the JRA-55 product. JRA-55 has been produced with the TL319 version of JMA’s operational data assimilation system as of December 2009, which was extensively improved since the Japanese 25-year Reanalysis (JRA-25). It also uses several newly available and improved past observations. The resulting reanalysis products are considerably better than the JRA-25 product. Two major problems of JRA-25 were a cold bias in the lower stratosphere, which has been diminished, and a dry bias in the Amazon basin, which has been mitigated. The temporal consistency of temperature analysis has also been considerably improved compared to previous reanalysis products. Our initial quality evaluation revealed problems such as a warm bias in the upper troposphere, large upward imbalance in the global mean net energy fluxes at the top of the atmosphere and at the surface, excessive precipitation over the tropics, and unrealistic trends in analyzed tropical cyclone strength. This paper also assesses the impacts of model biases and changes in the observing system, and mentions efforts to further investigate the representation of low-frequency variability and trends in JRA-55.
著者
Yayoi HARADA Hirotaka KAMAHORI Chiaki KOBAYASHI Hirokazu ENDO Shinya KOBAYASHI Yukinari OTA Hirokatsu ONODA Kazutoshi ONOGI Kengo MIYAOKA Kiyotoshi TAKAHASHI
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.94, no.3, pp.269-302, 2016 (Released:2016-07-02)
参考文献数
54
被引用文献数
261 329

This study investigates the quality of the Japanese 55-year Reanalysis (JRA-55), which is the second global reanalysis constructed by the Japan Meteorological Agency (JMA), by comparing it with other reanalyses and observational datasets. Improvements were found in the representation of atmospheric circulation on an isentropic surface and in the consistency of momentum budget based on the mass-weighted isentropic zonal mean method. The representation of climate variability in several regions was also examined. In the tropics, the frequencies of high spatial correlations with precipitation, which were estimated using the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis, are clearly higher in JRA-55 than in JRA-25. The results indicate that JRA-55 generally improved the representations of phenomena on a wide range of space-time scales, such as equatorial waves, and transient eddies in the storm track regions, compared with JRA-25 during the satellite era. Moreover, JRA-55 improved the temporal consistency compared with the older reanalyses throughout the reanalysis period. In the stratosphere, we found larger discrepancies between reanalyses for the extra-tropical stratosphere during the Southern Hemisphere (SH) winter. Comparisons with radiosonde temperature revealed that JRA-55 has a smaller bias in temperature than the other reanalyses in the extra-tropical SH winter before 1979. Some issues in JRA-55 were also identified. The amplitude of equatorial waves and Madden-Julian oscillation in JRA-55 are weaker than in the other reanalyses. JRA-55 shows unrealistic strong cooling in South America and Australia, although the spatial distribution of the long-term temperature trends in JRA-55 is the closest to an observational dataset of global historical surface temperature.
著者
Chiaki Kobayashi Hirokazu Endo Yukinari Ota Shinya Kobayashi Hirokatsu Onoda Yayoi Harada Kazutoshi Onogi Hirotaka Kamahori
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.10, pp.78-82, 2014 (Released:2014-05-14)
参考文献数
11
被引用文献数
6 51

As a subset of the Japanese 55-year Reanalysis (JRA-55) project, the Meteorological Research Institute of the Japan Meteorological Agency is conducting a global atmospheric reanalysis that assimilates only conventional surface and upper air observations, with no use of satellite observations, using the same data assimilation system as the JRA-55. The project, named the JRA-55 Conventional (JRA-55C), aims to produce a more homogeneous dataset over a long period, unaffected by changes in historical satellite observing systems. The dataset is intended to be suitable for studies of climate change or multi-decadal variability. The climatological properties deduced from the early results of the JRA-55C are similar to those of the JRA-55 in the troposphere and lower stratosphere, except for high southern latitudes. On the basis of forecast skill, the quality of the JRA-55C is inferior to that of the JRA-55, but the JRA-55C has better temporal homogeneity than the JRA-55. The skill of the latter changes during the JRA-55 period. We have completed 85% of the entire JRA-55C calculation as of February 2014. We expect that the JRA-55C will contribute to a much better understanding of the impact of changes in observing systems on climate trends and variability estimated from the JRA-55.