著者
Falko JUDT Daniel KLOCKE Rosimar RIOS-BERRIOS Benoit VANNIERE Florian ZIEMEN Ludovic AUGER Joachim BIERCAMP Christopher BRETHERTON Xi CHEN Peter DÜBEN Cathy HOHENEGGER Marat KHAIROUTDINOV 小玉 知央 Luis KORNBLUEH Shian-Jiann LIN 中野 満寿男 Philipp NEUMANN William PUTMAN Niklas RÖBER Malcolm ROBERTS 佐藤 正樹 澁谷 亮輔 Bjorn STEVENS Pier Luigi VIDALE Nils WEDI Linjiong ZHOU
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.99, no.3, pp.579-602, 2021 (Released:2021-06-10)
参考文献数
68
被引用文献数
26

近年のコンピューターとモデル開発の進歩により、全球ストーム解像モデルの時代が始まり、それに伴って気象や気候予測が一変する可能性を秘めている。本研究では、この新しいクラスのモデルを検証するという一般的なテーマの中で、9つの全球ストーム解像モデルについて、熱帯低気圧(TC)をシミュレートする能力を評価した。その結果、大まかにいえば、これらのモデルは現実的な熱帯低気圧を再現し、熱帯低気圧の強度の正確なシミュレーションを可能とするなど、全球モデルの長年の課題が解消されていることが示された。一方、TCはモデルの設計に強く影響され、全てのモデルはTCの数、強度、大きさ、構造に関して独自のバイアスを持っている。いくつかのモデルは他のモデルよりも優れたTCをシミュレートするが、全ての点で優れたモデルが存在するわけではなかった。全体的な結果は、全球ストーム解像モデルがTC予測の新時代を切り拓くことが可能であることを示しているが、その可能性を最大限に引き出すためには改良が必要である。
著者
Bjorn STEVENS Claudia ACQUISTAPACE Akio HANSEN Rieke HEINZE Carolin KLINGER Daniel KLOCKE Harald RYBKA Wiebke SCHUBOTZ Julia WINDMILLER Panagiotis ADAMIDIS Ioanna ARKA Vasileios BARLAKAS Joachim BIERCAMP Matthias BRUECK Sebastian BRUNE Stefan A. BUEHLER Ulrike BURKHARDT Guido CIONI Montserrat COSTA-SURÓS Susanne CREWELL Traute CRÜGER Hartwig DENEKE Petra FRIEDERICHS Cintia Carbajal HENKEN CATHY Hohenegger Marek JACOB Fabian JAKUB Norbert KALTHOFF Martin KÖHLER Thirza W. van LAAR Puxi LI Ulrich LÖHNERT Andreas MACKE Nils MADENACH Bernhard MAYER Christine NAM Ann Kristin NAUMANN Karsten PETERS Stefan POLL Johannes QUAAS Niklas RÖBER Nicolas ROCHETIN Leonhard SCHECK Vera SCHEMANN Sabrina SCHNITT Axel SEIFERT Fabian SENF Metodija SHAPKALIJEVSKI Clemens SIMMER Shweta SINGH Odran SOURDEVAL Dela SPICKERMANN Johan STRANDGREN Octave TESSIOT Nikki VERCAUTEREN Jessica VIAL Aiko VOIGT Günter ZÄNGL
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.98, no.2, pp.395-435, 2020 (Released:2020-05-08)
参考文献数
131
被引用文献数
12 85

More than one hundred days were simulated over very large domains with fine (0.156 km to 2.5 km) grid spacing for realistic conditions to test the hypothesis that storm (kilometer) and large-eddy (hectometer) resolving simulations would provide an improved representation of clouds and precipitation in atmospheric simulations. At scales that resolve convective storms (storm-resolving for short), the vertical velocity variance becomes resolved and a better physical basis is achieved for representing clouds and precipitation. Similarly to past studies we found an improved representation of precipitation at kilometer scales, as compared to models with parameterized convection. The main precipitation features (location, diurnal cycle and spatial propagation) are well captured already at kilometer scales, and refining resolution to hectometer scales does not substantially change the simulations in these respects. It does, however, lead to a reduction in the precipitation on the time-scales considered – most notably over the ocean in the tropics. Changes in the distribution of precipitation, with less frequent extremes are also found in simulations incorporating hectometer scales. Hectometer scales appear to be more important for the representation of clouds, and make it possible to capture many important aspects of the cloud field, from the vertical distribution of cloud cover, to the distribution of cloud sizes, and to the diel (daily) cycle. Qualitative improvements, particularly in the ability to differentiate cumulus from stratiform clouds, are seen when one reduces the grid spacing from kilometer to hectometer scales. At the hectometer scale new challenges arise, but the similarity of observed and simulated scales, and the more direct connection between the circulation and the unconstrained degrees of freedom make these challenges less daunting. This quality, combined with already improved simulation as compared to more parameterized models, underpins our conviction that the use and further development of storm-resolving models offers exciting opportunities for advancing understanding of climate and climate change.