著者
Masuo NAKANO Teruyuki KATO Syugo HAYASHI Sachie KANADA Yoshinori YAMADA Kazuo KURIHARA
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.90A, pp.339-350, 2012 (Released:2012-06-07)
参考文献数
32
被引用文献数
14 34

A 5-km-mesh nonhydrostatic cloud-system-resolving regional climate model (NHM-5km) has been developed at the Meteorological Research Institute (MRI) of the Japan Meteorological Agency (JMA) by improving upon the JMA operational mesoscale model (MSM). Three major changes have been made to MSM: the Kain-Frisch convective parameterization scheme has been improved to reduce the incidence of false predictions of rainfall areas along coastlines during the warm season, a spectral nudging method has been introduced to avoid phase-gap between the inner model (NHM-5km) and the outer model, and a Simple Biosphere model has been applied for sophisticated representation of land surface processes. This article presents details of the first two of these modifications.A present-day climate simulation is performed using NHM-5km by nesting within the results of a 20-kmmesh atmospheric global climate model (MRI-AGCM3.2S). Taylor’s skill score is used to compare the performances of NHM-5km and MRI-AGCM3.2S in terms of reproducing the spatial pattern of precipitation-based extreme indices over the Japanese Islands. The comparison shows that NHM-5km yields a significant improvement in reproducing the present-day climatology (e.g., the maximum number of consecutive dry days and the simple daily precipitation intensity index), suggesting that NHM-5km is a reliable tool for accurately predicting future changes in extreme weather at a fine spatial resolution.
著者
Fumiaki Kono Kazuo Kurihara Taro Tamada
出版者
The Biophysical Society of Japan
雑誌
Biophysics and Physicobiology (ISSN:21894779)
巻号頁・発行日
vol.19, pp.e190009, 2022 (Released:2022-04-16)
参考文献数
35
被引用文献数
5

Hydrogen atoms and hydration water molecules in proteins are essential for many biochemical processes, especially enzyme catalysis. Neutron crystallography enables direct observation of hydrogen atoms, and reveals molecular recognition through hydrogen bonding and catalytic reactions involving proton-coupled electron transfer. The use of neutron crystallography is still limited for proteins, but its popularity is increasing owing to an increase in the number of diffractometers for structural biology at neutron facilities and advances in sample preparation. According to the characteristics of the neutrons, monochromatic or quasi-Laue methods and the time-of-flight method are used in nuclear reactors and pulsed spallation sources, respectively, to collect diffraction data. Growing large crystals is an inevitable problem in neutron crystallography for structural biology, but sample deuteration, especially protein perdeuteration, is effective in reducing background levels, which shortens data collection time and decreases the crystal size required. This review also introduces our recent neutron structure analyses of copper amine oxidase and copper-containing nitrite reductase. The neutron structure of copper amine oxidase gives detailed information on the protonation state of dissociable groups, such as the quinone cofactor, which are critical for catalytic reactions. Electron transfer via a hydrogen-bond jump and a hydroxide ion ligation in copper-containing nitrite reductase are clarified, and these observations are consistent with the results from the quantum chemical calculations. This review article is an extended version of the Japanese article, Elucidation of Enzymatic Reaction Mechanism by Neutron Crystallography, published in SEIBUTSU-BUTSURI Vol. 61, p.216–222 (2021).
著者
Kazuo Kurihara Koji Ishihara Hidetaka Sasaki Yukio Fukuyama Hitomi Saitou Izuru Takayabu Kazuyo Murazaki Yasuo Sato Seiji Yukimoto Akira Noda
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.1, pp.97-100, 2005 (Released:2005-09-14)
参考文献数
14
被引用文献数
36 48

The Meteorological Research Institute (MRI) and the Japan Meteorological Agency (JMA) projected climate change over Japan due to global warming using a high-resolution Regional Climate Model of 20 km mesh size (RCM20) developed in MRI. Projection was made for 2081 to 2100 following a SRES-A2 scenario. Precipitation projected by RCM20 indicated that increased daily precipitation will be seen during the warm season from June to September. Except for this period, the precipitation amount will not change much or will slightly decrease around Japan. The increase during the warm season will be seen only in the western part of Japan. A possible cause of the increase is an El Niño-like SST pattern in the future. Due to the future increased summer SST in the eastern equatorial Pacific, anti-cyclonic circulation to the south of Japan will intensify and will induce a strong water vapor flux along the rim of the anti-cyclonic anomaly. The intensified flux will converge over the western part of Japan and may increase precipitation. Surface air temperature is projected to increase more than 2°C around Japan in January. In summer, the temperature increase will be lower by about 1°C than in winter.