著者
佐藤 直人 Naoto SATO
出版者
東北大学文学部日本語学科
雑誌
言語科学論集 (ISSN:13434586)
巻号頁・発行日
no.1, pp.63-74, 1997

はじめに、日本語のナガラ節が、付帯状況と逆接という二つの意味に対応して、それぞれVP内、NegPに付加するという観察が得られることを示す。この観察は、ナガラ節の性質を説明する理論が如何なるものであれ捉えなければならないものであるが、この妥当性を満たすという要件は可能な理論の幅を狭める。ナガラ節がもつ意味によって付加する位置が決定されるという理論より、付加する位置によって意味が決まるとする理論の方が自然な説明が与えられるため、そのような理論が望ましいことを論ずる。
著者
Naoto SATO Hironobu KURUMA Yuichiroh NAKAGAWA Hideto OGAWA
出版者
The Institute of Electronics, Information and Communication Engineers
雑誌
IEICE TRANSACTIONS on Information and Systems (ISSN:09168532)
巻号頁・発行日
vol.E103-D, no.2, pp.363-378, 2020-02-01
被引用文献数
7

As one type of machine-learning model, a “decision-tree ensemble model” (DTEM) is represented by a set of decision trees. A DTEM is mainly known to be valid for structured data; however, like other machine-learning models, it is difficult to train so that it returns the correct output value (called “prediction value”) for any input value (called “attribute value”). Accordingly, when a DTEM is used in regard to a system that requires reliability, it is important to comprehensively detect attribute values that lead to malfunctions of a system (failures) during development and take appropriate countermeasures. One conceivable solution is to install an input filter that controls the input to the DTEM and to use separate software to process attribute values that may lead to failures. To develop the input filter, it is necessary to specify the filtering condition for the attribute value that leads to the malfunction of the system. In consideration of that necessity, we propose a method for formally verifying a DTEM and, according to the result of the verification, if an attribute value leading to a failure is found, extracting the range in which such an attribute value exists. The proposed method can comprehensively extract the range in which the attribute value leading to the failure exists; therefore, by creating an input filter based on that range, it is possible to prevent the failure. To demonstrate the feasibility of the proposed method, we performed a case study using a dataset of house prices. Through the case study, we also evaluated its scalability and it is shown that the number and depth of decision trees are important factors that determines the applicability of the proposed method.