著者
Kotaro BESSHO Kenji DATE Masahiro HAYASHI Akio IKEDA Takahito IMAI Hidekazu INOUE Yukihiro KUMAGAI Takuya MIYAKAWA Hidehiko MURATA Tomoo OHNO Arata OKUYAMA Ryo OYAMA Yukio SASAKI Yoshio SHIMAZU Kazuki SHIMOJI Yasuhiko SUMIDA Masuo SUZUKI Hidetaka TANIGUCHI Hiroaki TSUCHIYAMA Daisaku UESAWA Hironobu YOKOTA Ryo YOSHIDA
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.94, no.2, pp.151-183, 2016 (Released:2016-04-28)
参考文献数
66
被引用文献数
143 871

Himawari-8/9—a new generation of Japanese geostationary meteorological satellites-carry state-of-the-art optical sensors with significantly higher radiometric, spectral, and spatial resolution than those previously available in the geostationary orbit. They have 16 observation bands, and their spatial resolution is 0.5 or 1 km for visible and near-infrared bands and 2 km for infrared bands. These advantages, when combined with shortened revisit times (around 10 min for Full Disk and 2.5 min for sectored regions), provide new levels of capacity for the identification and tracking of rapidly changing weather phenomena and for the derivation of quantitative products. For example, fundamental cloud product is retrieved from observation data of Himawari-8 operationally. Based on the fundamental cloud product, Clear Sky Radiance and Atmospheric Motion Vector are processed for numerical weather prediction, and volcanic ash product and Aeolian dust product are created for disaster watching and environmental monitoring. Imageries from the satellites are distributed and disseminated to users via multiple paths, including Internet cloud services and communication satellite services.
著者
Ryo Yoshida Kazuhide Tomita Kenta Kawamura Yukako Setaka Nobuhisa Ishii Masahiko Monma Hirotaka Mutsuzaki Masafumi Mizukami Hirotaka Ohse Shigeyuki Imura
出版者
The Society of Physical Therapy Science
雑誌
Journal of Physical Therapy Science (ISSN:09155287)
巻号頁・発行日
vol.33, no.2, pp.153-157, 2021 (Released:2021-02-13)
参考文献数
16
被引用文献数
1

[Purpose] The respiratory function in patients with cervical spinal cord injury is influenced by inspiratory intercostal muscle function. However, inspiratory intercostal muscle activity has not been conclusively evaluated. We evaluated the inspiratory intercostal muscle activity in patients with cervical spinal cord injury by using inspiratory intercostal electromyography, respiratory inductance plethysmography, and ultrasonography. [Participants and Methods] Three patients with cervical spinal cord injury were assessed. The change in mean amplitude (rest vs. maximum inspiration) was calculated by using intercostal muscle electromyography. Changes in intercostal muscle thickness (resting expiration and maximum inspiration) were also evaluated on ultrasonography. The waveform was converted to spirometry ventilation with respiratory inductance plethysmography, and the waveform at the xiphoid was considered to determine the rib cage volume. Each index was compared with the inspiratory capacities in each case. [Results] Intercostal muscle electromyography failed to measure the notable myoelectric potential in all the patients. The rib cage volume was higher at higher inspiratory capacities. The changes in muscle thickness were not significantly different between the patients. [Conclusion] The rib cage volume (measured with inductance plethysmography) was greater in the patients with cervical spinal cord injury when inspiratory intercostal muscle activity was high. Respiratory inductance plethysmography can capture inspiratory intercostal muscle function in patients with cervical spinal cord injury.