著者
Yang Yang Sho Ohno Yoshiyuki Tanaka Motoaki Doi
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.QH-069, (Released:2023-08-23)

Generally, Asteraceae flowers such as chrysanthemums and gerberas, are low ethylene-sensitive and do not exhibit petal wilting and abscission. However, previous research found that the flowers of dahlia, an Asteraceae member belonging to the tribe Coreopsideae, are ethylene-sensitive and show abscission layer development in petal-ovary boundaries. In this study, we investigated the ethylene sensitivity of 17 ornamental Asteraceae species belonging to different tribes by measuring the petal drawing resistance and vase life after 1–3 μL·L−1 ethylene exposure for 20 h. Although more than half of the tested species did not respond to ethylene, several species showed ethylene-sensitive petal wilting and abscission of fresh ray florets. Ethylene-sensitive petal wilting occurred in only two species (Calendula officinalis L. and Osteospermum L.) of the tribe Calenduleae, while ethylene-sensitive petal abscission occurred mainly in six species (Bidens ferulifolia D.C., Coreopsis lanceolata L., Cosmos atrosanguineus (Hook) Voss., Cosmos bipinnatus Cav., Cosmos sulphureus Cav. and Dahlia Cav.) of tribe Coreopsideae and one species (Helianthus annuus L.) of the tribe Heliantheae. In these species, abscission petals maintained their turgidity, and this process could be detected by measuring the petal drawing resistance of the ray florets. The reduction in petal drawing resistance, associated with abscission layer development in the petal-ovary boundaries, was observed only in these ethylene-sensitive species. The results of this study suggest that the ethylene sensitivity and petal senescing patterns in Asteraceae flowers may be associated with the phylogenetic classification at the tribe level.
著者
Sho Ohno Mizuki Yokota Haruka Yamada Fumi Tatsuzawa Motoaki Doi
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.UTD-305, (Released:2021-08-04)
被引用文献数
7

Yellow color in dahlia flowers is conferred from chalcones, butein and isoliquiritigenin. The color intensity of yellow dahlia cultivars is diverse, but a detailed study on this has not yet been performed. In this study, we first identified structures of flavonoids by nuclear magnetic resonance imaging in ray florets of the red-white bicolor ‘Shukuhai’, which contains chalcones, flavones and anthocyanins. Four anthocyanins, four flavone derivatives, five isoliquiritigenin derivatives and five butein derivatives were identified. Among the identified compounds, butein 4'-malonylsophoroside is considered to be the final product for butein derivatives and the presence of chalcone 4'-glucosyltransferase, chalcone 4'-glucoside glucosyltransferase, and chalcone 4'-glucoside malonyltransferase for isoliquiritigenin and butein modification was predicted. Also, the biosynthetic pathway of butein and isoliquiritigenin derivatives in dahlia with butein 4'-malonylsophoroside as the final product was predicted from the identified compounds. Next, we used nine yellow cultivars and lines with different color intensities and analyzed the correlation between the b* value, an indicator of yellow color, and level of chalcones. There was no difference in the presence or absence of major peaks among the cultivars and lines. Peak area per fresh weight measured by HPLC was high in butein 4'-malonylglucoside, butein 4'-sophoroside and isoliquiritigenin 4'-malonylglucoside, suggesting these three compounds were accumulated abundantly. Among the identified chalcones, the highest correlation coefficient was detected between the b* value and butein 4'-malonylglucoside (r = 0.86), butein 4'-sophoroside (r = 0.82) or isoliquiritigenin 4'-malonylglucoside (r = 0.76). These results suggest that these three chalcones confer yellow color in dahlia ray florets. The findings in this study will contribute not only to efforts at breeding new yellow dahlia cultivars, but also to molecular breeding of yellow flowers in other species by introducing the butein biosynthetic pathway.
著者
Sho Ohno Wakako Hori Munetaka Hosokawa Fumi Tatsuzawa Motoaki Doi
出版者
一般社団法人 園芸学会
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.OKD-099, (Released:2017-08-04)
被引用文献数
7

Bicolor flowering dahlias are a group of cultivars that produce inflorescences with bicolored petals characterized by a colored basal part and a white tip. However, they frequently produce single-colored petals, even if they are vegetatively propagated. In a previous study, strong relationships between inflorescence color and leaf phenotype were observed in a red–white bicolor flowering dahlia ‘Yuino’; red petal-producing individuals accumulate flavonoids in leaves, whereas only bicolor petal-producing individuals tend not to accumulate them in leaves. Flavonoids in leaves are assumed to be chalcones. In this study, we investigated flavonoids in the leaves of ‘Yuino’ by nuclear magnetic resonance analysis and identified six caffeoyl esters, four flavonol derivatives, and three novel butein derivatives in the flavonoid-rich leaves of ‘Yuino’. The three novel compounds were butein 4',4-O-di-[2-O-(β-glucopyranosyl)-β-glucopyranoside], butein 4'-O-[2-O-(β-glucopyranosyl)-β-glucopyranoside]-4-O-β-glucopyranoside, and butein 4'-[6-O-(3-hydroxy-3-methylglutaryl)-β-glucopyranoside]-4-O-β-glucopyranoside. On the other hand, only caffeoyl esters were detected in flavonoid-poor leaves. These data demonstrated that flavonoid-rich leaves accumulated the flavonoids of butein and flavonol derivatives. The common enzyme for the biosynthesis of butein and flavonol derivatives is chalcone synthase; thus, the importance of chalcone synthase for phenotypic lability in ‘Yuino’ was confirmed.
著者
Ayumi Deguchi Fumi Tatsuzawa Munetaka Hosokawa Motoaki Doi Sho Ohno
出版者
一般社団法人 園芸学会
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.MI-121, (Released:2016-02-04)
被引用文献数
14

The black flower color of dahlias (Dahlia variabilis) has been suggested to be attributed to a high accumulation of cyanidin (Cy)-based anthocyanins. A possible explanation for this effect is that Cy-based anthocyanins in dahlias contribute more to the black flower color than pelargonidin (Pg)-based anthocyanins by lowering petal lightness (L*) and chroma (C*), but no obvious evidence has been reported. In this study, four major anthocyanins accumulated in dahlia petals, 3,5-diglucoside (3,5diG) and 3-(6''-malonylglucoside)-5-glucoside (3MG5G) of Pg and Cy, were purified and their colors were evaluated in vitro at various pHs (3.0, 4.0, 4.5, 5.0, 5.5, 6.0, or 7.0) and various concentrations (0.25, 0.5, 1.0, 2.0, or 3.0 mg·mL−1 at pH 5.0 or pH 3.0). The color of solution of purified anthocyanins varied depending on pH. At pH 5.0, which is approximately the same as pH of dahlia petals, and at pH 3.0, at which anthocyanins are relatively stable, the L* and C* of Cy 3,5diG were similar to or higher than those of Pg 3,5diG, suggesting that Cy 3,5diG did not contribute more to the black flower coloring than Pg 3,5diG. On the other hand, the L* and C* of Cy 3MG5G were significantly lower than those of Pg 3MG5G, particularly above 2.0 mg·mL−1, suggesting that Cy 3MG5G contributed more than Pg 3MG5G. A similar tendency was observed in the color measurement of mixed anthocyanins in various proportion of Pg and Cy. The L* and C* of Pg 3MG5G were much higher than those of the other three anthocyanins; therefore, its color was considered to be the farthest from black among the four anthocyanins. The accumulated amount of 3MG5G-type anthocyanins was much higher than that of 3,5diG-type anthocyanins in all nine cultivars, although the proportion of Pg- and Cy-based anthocyanins varied among the cultivars. Considering these results, it was suggested that because 3MG5G-type anthocyanins predominantly accumulate in petals, and Cy 3MG5G has a significantly higher contribution to lowering L* and C* than Pg 3MG5G, the high accumulation of Cy-based anthocyanins is critical for the black flower coloring of dahlias. The contribution of each anthocyanin is considered to depend on the structure; therefore, identifying the anthocyanin with the highest contribution to lowering L* and C* may enable the production of black flowers in various species through the high accumulation of the anthocyanin in petals.
著者
Yang Yang Sho Ohno Yoshiyuki Tanaka Motoaki Doi
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.UTD-367, (Released:2022-08-02)

Cut dahlia (Dahlia Cav.) flowers have recently become popular, but their marketability has been limited due to their poor vase life. The purposes of this study were to clarify the roles of leaves and inflorescences in the senescence of cut dahlias and to discuss the sink-source relationship between vegetative organs and inflorescences. The leaf life was maintained much longer (16.7 days) than the inflorescence life (7.4 days). The inflorescence life was not affected by removal of leaves, while leaf life was prolonged (19.6 days) by removal of inflorescences. Sucrose, glucose, fructose and small quantities of myo-inositol were detected in florets, and in addition to these sugars, nystose and 1-kestose were detected in stems and leaves. Total sugar levels of the middle florets (14.5 mg·g−1 FW on day 0) declined rapidly before their senescence. Total sugar levels of leaves (20.5 mg·g−1 FW on day 0) and stems (19.0–22.5 mg·g−1 FW on day 0) also decreased gradually during the postharvest period, but the levels decreased more slowly in deflowered cut stems. Sugar leakage from stem bases into vase water occurred during the initial few days. Removal of inflorescences increased sugar leakage significantly and promoted callus formation on the stem base. From these results, the inflorescence is considered to be a strong sink for carbohydrates, and stems and leaves serve as source organs. Heat girdling applied to the flower necks and petioles, also increased sugar concentrations of stem bases, thus resulting in higher sugar leakage and callus formation, although both heat girdling treatments shortened the leaf life. The sharp decrease in sugar levels of florets and an insufficient sugar supply are considered to be responsible for the short vase life of cut dahlias. It is suggested that these effects might be partly due to the blockage of sugar flows into petals through abscission layer development in the petal-ovary boundaries. Based on these results, we illustrate the senescing process of cut dahlia flowers in relation to sugar dynamism.
著者
Sho Ohno Maiko Ueno Motoaki Doi
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.UTD-097, (Released:2019-11-15)
被引用文献数
12

Anthocyanin in pepper is beneficial as a food antioxidant compound and as a pigment for ornamentals, while unexpected anthocyanin accumulation in fruit, known as black spots, reduces the commercial quality of some cultivars. Previous studies demonstrated that the Anthocyanin (A) locus determines the anthocyanin accumulation in pepper fruits, and an MYB transcription factor, CaMYBA, was found to be located near the A locus. However, the causal gene sequence of the A locus has not yet been identified. With progress regarding genome information in pepper, two other homologous MYB genes were found to be located near CaMYBA, and they are also considered to be candidate genes for the A locus. In this study, we attempted to identify the causal gene sequence of the A locus by performing linkage analysis, genomic sequence analysis, and gene expression analysis of the three candidate MYB genes. A crossing experiment between pigmented ‘Peruvian Purple’ and non-pigmented cultivars confirmed that anthocyanin accumulation in the pigmented cultivar was controlled by a single locus. Gene expression analysis demonstrated that a basic helix-loop-helix transcription factor, CaMYC, and CaMYBA were expressed abundantly in pigmented cultivars, but the other two MYB genes were not. Genotyping of the F2 population derived from the cross demonstrated that the anthocyanin accumulation phenotype was highly linked to CaMYBA, but not to CaMYC. The DNA sequence of CaMYBA in pigmented cultivars had an insertion of a 4.3 kb retrotransposable element LINE-1 in the first intron, but that of non-pigmented cultivars did not. No pigmented cultivar-specific sequence was found in the promoter region of CaMYBA. Therefore, it was suggested that CaMYBA, but not the other two homologous MYB genes, is the A locus gene, and insertion of LINE-1 in CaMYBA appeared to be important for the regulation of anthocyanin accumulation, although the mechanism by which the LINE-1 insertion induces CaMYBA expression is unknown.
著者
Sayumi Matsuda Mitsuru Sato Sho Ohno Soo-Jung Yang Motoaki Doi Munetaka Hosokawa
出版者
園芸学会
雑誌
Journal of the Japanese Society for Horticultural Science (ISSN:18823351)
巻号頁・発行日
pp.MI-009, (Released:2014-09-20)
被引用文献数
3 15

For determination of the endogenous and exogenous causes of somaclonal variation in in vitro culture, a bioassay system was developed using the variegated Saintpaulia (African violet) ‘Thamires’ (Saintpaulia sp.), having pink petals with blue splotches caused by transposon VGs1 (Variation Generator of Saintpaulia 1) deletion in the promoter region of flavonoid 3',5'-hydroxylase. Not only true-to-type but also many solid blue and chimeric plants regenerate in vitro-cultured explants of this cultivar. Using multiplex PCR that enables the determination of these variations, we attempted to evaluate the effects of four candidate triggers of mutation: pre-existing mutated cells, shooting conditions in vitro or ex vitro, cutting treatment of explants, and addition of plant growth regulators (PGRs) to the medium. The percentages of somaclonal variations among total shoots regenerated from leaf segments and stamens were 46.6 and 56.5, which were higher than the percentages expected from pre-existing mutated cells (3.6 and 1.4, respectively). These results indicate that pre-existing mutated cells are not a main cause of somaclonal variations. The percentage of somaclonal variation was independent of culture conditions for mother plants; the mutation percentages of adventitious shoots regenerated from ex vitro- and in vitro-grown leaves were 9.2% and 8.5%, respectively. In addition, the percentage of somaclonal variations of adventitious shoots regenerated under in vitro conditions from the in vitro grown mother plants was also low, at 4.9%. This indicates that the in vitro condition itself is not a main cause of somaclonal variation. However, when adventitious shoots were regenerated from 10 × 5-mm cut-leaf laminas on a PGR-free medium, the percentage of somaclonal variation was 26.4%. In addition, the percentage of somaclonal variations dramatically increased when PGRs were added to the medium for both leaves and leaf segments (39.9 and 46.6, respectively). The bioassay system using Saintpaulia ‘Thamires’ will enable the screening of many environmental factors because of its rapidity and ease of use and will facilitate the development of a new tissue culture technology for avoiding mutation.