著者
Kazuyoshi OOUCHI Jun YOSHIMURA Hiromasa YOSHIMURA Ryo MIZUTA Shoji KUSUNOKI Akira NODA
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.84, no.2, pp.259-276, 2006 (Released:2006-05-19)
参考文献数
41
被引用文献数
293 443

Possible changes in the tropical cyclones in a future, greenhouse-warmed climate are investigated using a 20 km-mesh, high-resolution, global atmospheric model of MRI/JMA, with the analyses focused on the evaluation of the frequency and wind intensity. Two types of 10-year climate experiments are conducted. One is a present-day climate experiment, and the other is a greenhouse-warmed climate experiment, with a forcing of higher sea surface temperature and increased greenhouse-gas concentration. A comparison of the experiments suggests that the tropical cyclone frequency in the warm-climate experiment is globally reduced by about 30% (but increased in the North Atlantic) compared to the present-day-climate experiment. Furthermore, the number of intense tropical cyclones increases. The maximum surface wind speed for the most intense tropical cyclone generally increases under the greenhouse-warmed condition (by 7.3 m s−1 in the Northern Hemisphere and by 3.3 m s−1 in the Southern Hemisphere). On average, these findings suggest the possibility of higher risks of more devastating tropical cyclones across the globe in a future greenhouse-warmed climate.
著者
Yasuko OKADA Tetsuya TAKEMI Hirohiko ISHIKAWA Shoji KUSUNOKI Ryo MIZUTA
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.95, no.4, pp.239-260, 2017 (Released:2017-07-04)
参考文献数
45
被引用文献数
19

This study investigates future changes in atmospheric circulation during the Baiu in Japan using 20-km-mesh atmospheric general circulation model (AGCM) simulations for the present-day (1979-2003) and the future (2075-2099) climates under the Representative Concentration Pathways 8.5 scenario. The simulated future climates include the outputs obtained with one control sea surface temperature (SST) and three different SST patterns. The Baiu frontal zone, defined as the meridional gradient of equivalent potential temperature, gradually moves northward during June–July–August in the present-day climate. In the future climate simulations using the control SST, the Baiu frontal zone is projected to stay to the south of Japan in June. Thus, precipitation is projected to increase over this region, while decreasing in the western part of Japan. Future changes in precipitation and atmospheric circulations in June are consistent across all four SST patterns. However, precipitation and atmospheric circulation in July and August in the future climate simulation depends on the SST patterns as follows: in non-El Niño-like SST pattern, the Baiu terminates in late July, similar to that of the present-day climate; a result with an El Niño-like SST pattern shows that sufficient amount moisture is transported to the Japanese islands and leads in a delay of the Baiu termination until August; and in the SST pattern with strong warming in the western North Pacific (WNP), a sufficient amount of moisture is transported to the south of Japan from June until August. The difference in the SST pattern leads to a variation in sea-level pressure in the WNP and affects a variation of the Northern Pacific subtropical high around the Japanese islands in July and August.
著者
Ryo Mizuta Osamu Arakawa Tomoaki Ose Shoji Kusunoki Hirokazu Endo Akio Kitoh
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.10, pp.167-171, 2014 (Released:2014-10-23)
参考文献数
14
被引用文献数
83 139

Climate changes for the end of the 21st century projected by Coupled Model Intercomparison Project phase 5 (CMIP5) models are classified into three clusters by a cluster analysis of annual-mean tropical sea surface temperature (SST) change patterns. The classified SST change patterns are featured by the zonal gradient of the change in the equatorial Pacific and inter-hemispheric contrast of the warming. Precipitation and atmospheric circulation responses are composited for the clusters, and their relationships to the SST changes are examined. Precipitation increase is larger where SST warming is larger than surroundings and vice versa. Common precipitation and atmospheric circulation responses for each cluster are found also over tropical lands and the extratropics as well as in the tropical oceans, suggesting that some remote effects of the tropical SST change patterns could be one reason for less agreement among CMIP5 models in climate changes.