著者
Seiji YUKIMOTO Yukimasa ADACHI Masahiro HOSAKA Tomonori SAKAMI Hiromasa YOSHIMURA Mikitoshi HIRABARA Taichu Y. TANAKA Eiki SHINDO Hiroyuki TSUJINO Makoto DEUSHI Ryo MIZUTA Shoukichi YABU Atsushi OBATA Hideyuki NAKANO Tsuyoshi KOSHIRO Tomoaki OSE Akio KITOH
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.90A, pp.23-64, 2012 (Released:2012-06-07)
参考文献数
157
被引用文献数
354 624

A new global climate model, MRI-CGCM3, has been developed at the Meteorological Research Institute (MRI). This model is an overall upgrade of MRI’s former climate model MRI-CGCM2 series. MRI-CGCM3 is composed of atmosphere-land, aerosol, and ocean-ice models, and is a subset of the MRI’s earth system model MRI-ESM1. Atmospheric component MRI-AGCM3 is interactively coupled with aerosol model to represent direct and indirect effects of aerosols with a new cloud microphysics scheme. Basic experiments for pre-industrial control, historical and climate sensitivity are performed with MRI-CGCM3. In the pre-industrial control experiment, the model exhibits very stable behavior without climatic drifts, at least in the radiation budget, the temperature near the surface and the major indices of ocean circulations. The sea surface temperature (SST) drift is sufficiently small, while there is a 1 W m-2 heating imbalance at the surface. The model’s climate sensitivity is estimated to be 2.11 K with Gregory’s method. The transient climate response (TCR) to 1 % yr-1 increase of carbon dioxide (CO2) concentration is 1.6 K with doubling of CO2 concentration and 4.1 K with quadrupling of CO2 concentration. The simulated present-day mean climate in the historical experiment is evaluated by comparison with observations, including reanalysis. The model reproduces the overall mean climate, including seasonal variation in various aspects in the atmosphere and the oceans. Variability in the simulated climate is also evaluated and is found to be realistic, including El Niño and Southern Oscillation and the Arctic and Antarctic oscillations. However, some important issues are identified. The simulated SST indicates generally cold bias in the Northern Hemisphere (NH) and warm bias in the Southern Hemisphere (SH), and the simulated sea ice expands excessively in the North Atlantic in winter. A double ITCZ also appears in the tropical Pacific, particularly in the austral summer.
著者
Hirokazu Endo Akio Kitoh Hiroaki Ueda
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.57-63, 2018 (Released:2018-04-28)
参考文献数
39
被引用文献数
33

Recent studies indicate that the view of a general weakening of the monsoon circulation in a warmer climate cannot be simply applied in the Asian monsoon regions. To understand the Asian summer monsoon response to global warming, idealized multi-model experiments are analyzed. In the coupled model response to increased CO2, monsoon westerlies in the lower troposphere are shifted poleward and slightly strengthened over land including South Asia and East Asia, while the tropical easterly jet in the upper troposphere are broadly weakened. The different circulation responses between the lower and upper troposphere is associated with vertically opposite changes in the meridional temperature gradient (MTG) between the Eurasian continent and the tropical Indian Ocean, with a strengthening (weakening) in the lower (upper) troposphere. Atmospheric model experiments to separate the effects of CO2 radiative forcing and sea surface temperature warming reveal that the strengthened MTG in the lower troposphere is explained by the CO2 forcing. On a global perspective, CO2-induced enhancement of the land–sea thermal contrast and resultant circulation changes are the most influential in the South Asian monsoon. This study emphasizes an important role of the land warming on the Asian monsoon response to global warming.
著者
Hirokazu Endo Akio Kitoh Ryo Mizuta
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2022-010, (Released:2022-03-01)
被引用文献数
1

Future changes in extreme precipitation over the western North Pacific and East Asia (WNP-EA) are investigated using a 20 km mesh atmospheric general circulation model (AGCM). Time-slice simulations are performed under low- and high-emission scenarios using different spatial patterns of changes in sea surface temperature. In the WNP-EA region, future changes in the climatological mean of the annual maximum 1 day precipitation total (Rx1d) are characterized by a large meridional variation, where the higher the latitude, the greater the rate of increase in Rx1d, although this pattern is not so clear under the low emission scenario. This feature probably results from a combination of two factors: a greater warming in high latitudes and a decrease in tropical cyclone (TC) frequency in the subtropics. The future changes in Rx1d climatology for the 20 km AGCM show a marked difference in comparison with those of the lower-resolution AGCM and conventional climate models. Part of this discrepancy may come from differences in model resolution through representation of TCs, suggesting that coarse-resolution models may have some systematic bias in future projections of extreme precipitation in the WNP-EA region.
著者
Hirokazu Endo Akio Kitoh Ryo Mizuta
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.18, pp.58-64, 2022 (Released:2022-03-29)
参考文献数
38
被引用文献数
1

Future changes in extreme precipitation over the western North Pacific and East Asia (WNP-EA) are investigated using a 20 km mesh atmospheric general circulation model (AGCM). Time-slice simulations are performed under low- and high-emission scenarios using different spatial patterns of changes in sea surface temperature. In the WNP-EA region, future changes in the climatological mean of the annual maximum 1 day precipitation total (Rx1d) are characterized by a large meridional variation, where the higher the latitude, the greater the rate of increase in Rx1d, although this pattern is not so clear under the low emission scenario. This feature probably results from a combination of two factors: a greater warming in high latitudes and a decrease in tropical cyclone (TC) frequency in the subtropics. The future changes in Rx1d climatology for the 20 km AGCM show a marked difference in comparison with those of the lower-resolution AGCM and conventional climate models. Part of this discrepancy may come from differences in model resolution through representation of TCs, suggesting that coarse-resolution models may have some systematic bias in future projections of extreme precipitation in the WNP-EA region.
著者
Akio KITOH
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.95, no.1, pp.7-33, 2017 (Released:2017-03-01)
参考文献数
220
被引用文献数
69

This study provides an overview of the Asian monsoon and its change as simulated by atmosphere–ocean coupled general circulation models and high-resolution atmospheric general circulation models, focusing on the seasonal mean circulation and precipitation climatology. After reviewing the drivers of and the elements that affect the monsoon, the ability of those climate models to reproduce the Asian monsoon is assessed. The Asian monsoon is better reproduced in the Coupled Modeling Intercomparison Project phase 5 (CMIP5) models than in the CMIP3 models, although biases remain. Projected future changes in the Asian monsoon at the end of the 21st century are then reviewed. Overall projections are similar for both CMIP3 and CMIP5 models with increases in precipitation, albeit with weakened circulation in the South Asian summer, enhanced circulation and increased precipitation in the East Asian summer, and latitude-dependent changes in the winter monsoon circulation in East Asia. However, differences exist in the projected local changes, leading to uncertainty in projections.
著者
Wan-Ru HUANG Po-Han HUANG Ya-Hui CHANG Chao-Tzuen CHENG Huang-Hsiung HSU Chia-Ying TU Akio KITOH
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.97, no.2, pp.481-499, 2019 (Released:2019-04-03)
参考文献数
58
被引用文献数
9

By using the Weather Research and Forecasting (denoted as WRF) model driven by two super-high-resolution global models, High Resolution Atmospheric Model (denoted as HiRAM) and Meteorological Research Institute Atmospheric General Circulation Model (denoted as MRI), this study investigates the dynamical downscaling simulation and projection of extreme precipitation activities (including intensity and frequency) in Taiwan during the Mei-Yu seasons (May and June). The analyses focus on two time period simulations: the present-day (1979-2003, historical run) and the future (2075-2099, RCP8.5 scenario). For the present-day simulation, our results show that the bias of HiRAM and MRI in simulating the extreme precipitation activities over Taiwan can be reduced after dynamical downscaling by using the WRF model. For the future projections, both the dynamical downscaling models (i.e., HiRAM-WRF and MRI-WRF) project that extreme precipitation will become more frequent and more intense over western Taiwan but less frequent and less intense over eastern Taiwan. The east-west contrast in the projected changes in extreme precipitation in Taiwan are found to be a local response to the enhancement of southwesterly monsoonal flow over the coastal regions of South China, which leads to an increase in water vapor convergence over the windward side (i.e., western Taiwan) and a decrease in water vapor convergence over the leeward side (i.e., eastern Taiwan). Further examinations of the significance of the projected changes in extreme precipitation that affect the agriculture regions of Taiwan show that the southwestern agriculture regions will be affected by extreme precipitation events more frequently and more intensely than the other subregions. This finding highlights the importance of examining regional differences in the projected changes in extreme precipitation over the complex terrain of East Asia.
著者
Akio KITOH Hirokazu ENDO
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.97, no.1, pp.141-152, 2019 (Released:2019-02-06)
参考文献数
40
被引用文献数
22

Future changes in precipitation extremes and role of tropical cyclones are investigated through a large ensemble experiment, considering 6,000 years for the present and 5,400 years under +4 K warming, using a 60-km mesh Meteorological Research Institute atmospheric general circulation model version 3.2. As in the previous findings of the authors, the annual maximum 1-day precipitation total (Rx1d) is projected to increase in the warmer world in the future almost globally, except in the western North Pacific where a projected decrease of tropical cyclone frequency results in only small change or even reduction of Rx1d. Furthermore, a large ensemble size enables us to investigate the changes in the tails of the Rx1d distribution. It is found that 90- and 99-percentile values of the Rx1d associated with tropical cyclones will increase in a region extending from Hawaii to the south of Japan. In this region, the interannual variability of the Rx1d associated with tropical cyclones is also projected to increase, implying an increasing risk of rare heavier rainfall events because of global warming.
著者
Akio KITOH Tomoaki OSE Izuru TAKAYABU
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.94A, pp.1-16, 2016 (Released:2016-02-11)
参考文献数
109
被引用文献数
3 32

High-resolution downscaling is vital to project climate extremes and their future changes by resolving fine topography reasonably well, which is a key to represent local climatology and impacts of weather extremes. A direct dynamical downscaling with a regional climate model (RCM) embedded within an atmosphere-ocean coupled general circulation model (AOGCM) is commonly used but is subject to systematic biases in their present-day simulations of AOGCM, which may cause unexpected effects on future projections and lead to difficult interpretation of climate change. In a high-resolution atmospheric general circulation model (AGCM)-RCM system, the present-day climate in AGCM is forced by observed sea surface temperature (SST) and sea-ice distribution. Then, the future climate is calculated with the “future” boundary conditions (SST and sea-ice), which are created by adding their future changes projected by AOGCM to the observed present-day values, besides the future radiative forcing. This system is one of methods to minimize the effects of such biases. A Meteorological Research Institute AGCM with 20-km grids is successfully applied to project future changes in weather extremes such as tropical cyclones and rain systems that cause heavy rainfall and strong winds. Regional downscaling with 5-km mesh RCM is then performed over certain area to investigate local extreme rainfall events and their future changes. In this paper, we review various downscaling methods and try to rationalize a use of high-resolution AGCM-RCM system.
著者
Ryo Mizuta Osamu Arakawa Tomoaki Ose Shoji Kusunoki Hirokazu Endo Akio Kitoh
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.10, pp.167-171, 2014 (Released:2014-10-23)
参考文献数
14
被引用文献数
83 140

Climate changes for the end of the 21st century projected by Coupled Model Intercomparison Project phase 5 (CMIP5) models are classified into three clusters by a cluster analysis of annual-mean tropical sea surface temperature (SST) change patterns. The classified SST change patterns are featured by the zonal gradient of the change in the equatorial Pacific and inter-hemispheric contrast of the warming. Precipitation and atmospheric circulation responses are composited for the clusters, and their relationships to the SST changes are examined. Precipitation increase is larger where SST warming is larger than surroundings and vice versa. Common precipitation and atmospheric circulation responses for each cluster are found also over tropical lands and the extratropics as well as in the tropical oceans, suggesting that some remote effects of the tropical SST change patterns could be one reason for less agreement among CMIP5 models in climate changes.