著者
Hideyuki Yamamoto Sayomi Higa-Nakamine Nobuhiro Noguchi Noriko Maeda Yutaka Kondo Seikichi Toku Ichiro Kukita Kazuhiro Sugahara
出版者
(公社)日本薬理学会
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
pp.13R11CP, (Released:2014-02-19)
参考文献数
28
被引用文献数
2 17

Four transmembrane tyrosine kinases constitute the ErbB protein family: epidermal growth factor receptor (EGFR) or ErbB1, ErbB2, ErbB3, and ErbB4. In general, the structure and mechanism of the activation of these members are similar. However, significant differences in homologous desensitization are known between EGFR and ErbB4. Desensitization of ligand-occupied EGFR occurs by endocytosis, while that of ErbB4 occurs by selective cleavage at the cell surface. Because ErbB4 is abundantly expressed in neurons from fetal to adult brains, elucidation of the desensitization mechanism is important to understand neuronal development and synaptic functions. Recently, it has become clear that heterologous desensitization of EGFR and ErbB4 are induced by endocytosis and cleavage, respectively, similar to homologous desensitization. It has been reported that heterologous desensitization of EGFR is induced by serine phosphorylation of EGFR via the p38 mitogen-activated protein kinase (p38 MAP kinase) pathway in various cell lines, including alveolar epithelial cells. In contrast, the protein kinase C pathway is involved in ErbB4 cleavage. In this review, we will describe recent advances in the desensitization mechanisms of EGFR and ErbB4, mainly in alveolar epithelial cells and hypothalamic neurons, respectively.
著者
Kazuho Sakamoto Junko Kimura
出版者
(公社)日本薬理学会
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.123, no.4, pp.289-294, 2013-12-20 (Released:2013-12-19)
参考文献数
30
被引用文献数
10 61

Statins, a group of drugs used for the treatment of hypercholesterolemia, have adverse effects on skeletal muscle. The symptoms of these effects range from slight myalgia to severe rhabdomyolysis. The number of patients currently taking statins is estimated to be several millions worldwide. However, the mechanism of statins’ myotoxic effects is unclear. Statins inhibit biosynthesis of mevalonate, a rate-limiting step of cholesterol synthesis, by inhibiting HMG-CoA reductase. Mevalonate is also an essential precursor for producing isoprenoids such as farnesylpyrophosphate and geranylgeranylpyrophosphate. These isoprenoids are especially important for anchoring small GTPases to the membrane before they function; e.g., Ras GTPases modulate proliferation and apoptosis, Rho GTPases control cytoskeleton formation, and Rab GTPases are essential for intracellular vesicle trafficking. Inactivation of these small GTPases alters cellular functions. Recently, we successfully reproduced statin-induced myotoxicity in culture dishes using in vitro skeletal muscle systems (e.g., skeletal myotubes and myofibers). This review summarizes our findings that statins induce depletion of isoprenoids and inactivation of small GTPases, especially Rab, which are critical for statin-induced myotoxicity. Although further study is required, our findings may contribute to the prevention and treatment of statins’ adverse effects on skeletal muscle and development of safer anti-hypercholesterolemia drugs.
著者
Kui Xiao Jiehan Jiang Chaxiang Guan Chunling Dong Guifang Wang Li Bai Jiayuan Sun Chengping Hu Chunxue Bai
出版者
(公社)日本薬理学会
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.123, no.2, pp.102-109, 2013-10-20 (Released:2013-10-19)
参考文献数
57
被引用文献数
21 88

Curcumin is a major yellow pigment and active component of turmeric widely used as dietary spice and herbal medicine. This compound has been reported to be a promising antitumor agent, although the underlying molecular mechanisms are not fully understood yet. In this study, we reported that curcumin inhibited growth of lung adenocarcinoma cells, but had no cytotoxic activity to IMR-90 normal lung fibroblast cells. Curcumin induced autophagy in the A549 human lung adenocarcinoma cell line, evidenced by LC3 immunofluorescence analysis and immunoblotting assays on LC3 and SQSTM1. Moreover, the autophagy inhibitor 3-MA partly blocked the inhibitory effect of curcumin on the growth of A549 cells. Curcumin markedly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetylCoA carboxylase in A549 cells. At last, pharmacological blockade of the AMPK signaling pathway by compound C and genetic disruption of the AMPK signaling pathway with siRNA-mediated AMPKα1 knockdown impaired the autophagy-inducing effect of curcumin. Collectively, our data suggests that curcumin induces autophagy via activating the AMPK signaling pathway and the autophagy is important for the inhibiting effect of curcumin in lung adenocarcinoma cells.
著者
Eun-Joo Shin Wan Kyunn Whang Sungun Kim Jae-Hyung Bach Jin-Man Kim Xuan-Khanh Thi Nguyen Thuy-Ty Lan Nguyen Bae Dong Jung Kiyofumi Yamada Toshitaka Nabeshima Hyoung-Chun Kim
出版者
(公社)日本薬理学会
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.113, no.4, pp.404-408, 2010 (Released:2010-08-18)
参考文献数
15
被引用文献数
11 25

Parishin C, a major component of Gastrodia elata BLUME (GE), was purified from GE. Because GE modulates the serotonergic system and the 5-HT1A receptor is an important therapeutic target of schizophrenia, we examined whether parishin C affects phencyclidine-induced abnormal behaviors in mice. Phencyclidine-induced abnormal behaviors were significantly ameliorated by parishin C. These effects were reversed by WAY 100635, a 5HT1A–receptor antagonist. Consistently, parishin C showed high affinity at 5-HT1A receptor as well as a 5-HT1A–agonist activity in a 8-OH-DPAT–stimulated [35S]GTP-γS binding assay. Our results suggest that the antipsychotic effects of parishin C require activation of 5-HT1A receptors.
著者
Kiyofumi Yamada Toshitaka Nabeshima
出版者
(公社)日本薬理学会
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.91, no.4, pp.267-270, 2003 (Released:2003-04-21)
参考文献数
30
被引用文献数
177 424

Activity-dependent changes in synaptic strength are considered mechanisms underlying learning and memory. Brain-derived neurotrophic factor (BDNF) plays an important role in activity-dependent synaptic plasticity such as long-term potentiation. Recent experimental evidence supports the role of BDNF in memory processes: Memory acquisition and consolidation are associated with an increase in BDNF mRNA expression and the activation of its receptor TrkB. Genetic as well as pharmacologic deprivation of BDNF or TrkB impairs learning and memory. In a positively motivated radial arm maze test, activation of the TrkB/phosphatidylinositol-3 kinase (PI3-K) signaling pathway in the hippocampus is associated with consolidation of spatial memory through an activation of translational processes. In a negatively motivated passive avoidance test, mitogen-activated protein kinase (MAPK) is activated during acquisition of fear memory. Furthermore, recent findings suggest the importance of interaction between BDNF/TrkB signaling and NMDA receptors for spatial memory. A Src-family tyrosine kinase, Fyn plays a role in this interaction by linking TrkB with NR2B. These findings suggest that BDNF/TrkB signaling in the hippocampus plays a crucial role in learning and memory.
著者
Toshio Tanaka Takehiko Oka Yasuhito Shimada Noriko Umemoto Junya Kuroyanagi Chikara Sakamoto Liqing Zang Zhipeng Wang Yuhei Nishimura
出版者
(公社)日本薬理学会
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.107, no.1, pp.8-14, 2008 (Released:2008-05-20)
参考文献数
9
被引用文献数
11 21

The most important strategies in pharmacogenomics are gene expression profiling and the network analysis of human disease models. We have previously discovered novel drug target candidates in cardiovascular diseases through investigations of these pharmacogenomics. The significant induction of S100C mRNA and protein expression was detected in the rat pulmonary hypertension and myocardial infarction model. We also found increased taurine in hypoxia, a calcium-associated cytoprotective compound, to suppress the hypoxia-induced S100C gene expression and vascular remodeling. These results suggest that S100C may be one of the potential novel drug targets in hypoxic or ischemic diseases. Delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage causes cerebral ischemia and infarction. Using a DNA microarray, a prominant upregulation of heme oxygenase-1 (HO-1) and heat shock protein (HSP) 72 mRNAs were observed in the basilar artery of a murine vasospasm model. Antisense HO-1 and HSP 72 oligodeoxynucleotide inhibited HO-1 and HSP 72 induction, respectively, and significantly aggravated cerebral vasospasm. Moreover, we have also developed a unique heart failure model in zebrafish and identified several candidate genes as novel drug targets. These results suggest that pharmacogenomic network analysis has the potential to bridge the gap between in vitro and in vivo studies and could define strategies for identifying novel drug targets in various cardiovascular diseases.
著者
Rajan Ravindran Rathinasamy Sheela Devi James Samson Manohar Senthilvelan
出版者
(公社)日本薬理学会
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.98, no.4, pp.354-360, 2005 (Released:2005-08-20)
参考文献数
26
被引用文献数
31 75

In this modern world, stress and pollution are unavoidable phenomena affecting the body system at various levels. A large number of people are exposed to potentially hazardous noise levels in daily modern life, such as noise from work environments, urban traffic, and household appliances. A variety of studies have suggested an association between noise exposure and the occurrence of disorders involving extra-auditory organs such as disorders of the nervous, endocrine, and cardiovascular systems. In this study, Wistar strain albino rats were subjected to 100 dB broadband white noise, 4 h daily for 15 days. The high-pressure liquid chromatographic estimation of norepinephrine, epinephrine, dopamine, and serotonin in discrete regions of the rat brain indicates that noise stress can alter the brain biogenic amines after 15 days of stress exposure. Ocimum sanctum (OS), a medicinal herb that is widely claimed to posses antistressor activity and used extensively in the Indian system of medicine for a variety of disorders, was chosen for this study. Administration of the 70% ethanolic extract of OS had a normalizing action on discrete regions of brain and controlled the alteration in neurotransmitter levels due to noise stress, emphasizing the antistressor potential of this plant.
著者
Tsutomu Nakahara Asami Mori Yuki Kurauchi Kenji Sakamoto Kunio Ishii
出版者
(公社)日本薬理学会
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
pp.13R03CP, (Released:2013-09-25)
参考文献数
57
被引用文献数
10 38

Increasing evidence suggests that the complex interactions among multiple cell types including neuronal, glial, and vascular cells, are critical for maintaining adequate cerebral blood flow that is necessary for normal brain function and survival. The disturbance of these interactions contributes to the pathogenesis of central nervous system disorders such as stroke and Alzheimer’s disease. The retina is part of the central nervous system, and the properties of vasculature in the retina are similar to those in the brain. The interactions among multiple cell types in the retina also play an important role in the maintenance of tissue homeostasis, and the impairment of interactions can contribute to the onset and/or progression of retinal diseases. In this review, we describe the neurovascular interactions in the retina and alternations of interactions in pathological conditions such as diabetic retinopathy and glaucoma.
著者
Makoto Katori Masataka Majima
出版者
(公社)日本薬理学会
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.100, no.5, pp.370-390, 2006 (Released:2006-06-24)
参考文献数
168
被引用文献数
12 33

It is widely accepted that a high sodium intake triggers blood pressure rise. However, only one-third of the normotensive subjects were reported to show salt-sensitivity in their blood pressure. Many factors have been proposed as causes of salt-sensitive hypertension, but none of them provides a satisfactory explanation. We propose, on the basis of accumulated data, that the reduced activity of the kallikrein-kinin system in the kidney may provide this link. Renal kallikrein is secreted by the distal connecting tubular cells and all kallikrein-kinin system components are distributed along the collecting ducts in the distal nephron. Bradykinin generated is immediately destroyed by carboxypeptidase Y-like exopeptidase and neutral endopeptidase, both quite independent from the kininases in plasma, such as angiotensin converting enzyme. The salt-sensitivity of the blood pressure depends largely upon ethnicity and potassium intake. Interestingly, potassium and ATP-sensitive potassium (KATP) channel blockers accelerate renal kallikrein secretion and suppress blood pressure rises in animal hypertension models. Measurement of urinary kallikrein may become necessary in salt-sensitive normotensive and hypertensive subjects. Furthermore, pharmaceutical development of renal kallikrein releasers, such as KATP channel blockers, and renal kininase inhibitors, such as ebelactone B, may lead to the development of novel antihypertensive drugs.
著者
Imari Mimura Tetsuhiro Tanaka Youichiro Wada Tatsuhiko Kodama Masaomi Nangaku
出版者
(公社)日本薬理学会
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.115, no.4, pp.453-458, 2011 (Released:2011-04-15)
参考文献数
41
被引用文献数
18 29

The hypoxia response regulated primarily by hypoxia-inducible factor (HIF) influences metabolism, cell survival, and angiogenesis to maintain biological homeostasis. In addition to the traditional transcriptional regulation by HIF, recent studies have shown that epigenetic modulation such as histone methylation, acetylation, and DNA methylation could change the regulation of the response to hypoxia. Eukaryotic chromatin is known to be modified by multiple post-translational histone methylation and demethylation, which result in the chromatin conformation change to adapt to hypoxic stimuli. Interestingly, some of the histone demethylase enzymes, which have the Jumonji domain–containing family, require oxygen to function and are induced by hypoxia in an HIF-1–dependent manner. Recent studies have demonstrated that histone modifiers play important roles in the hypoxic environment such as that in cancer cells and that they may become new therapeutic targets for cancer patients. It may lead to finding a new therapy for cancer to clarify a new epigenetic mechanism by HIF and histone demethylase such as JMJD1A (KDM3A) under hypoxia.
著者
Fumiko Sekiguchi Atsufumi Kawabata
出版者
(公社)日本薬理学会
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
pp.13R05CP, (Released:2013-08-01)
参考文献数
42
被引用文献数
19 64

Low-voltage-activated T-type Ca2+ channels (T-channels), especially Cav3.2 among the three isoforms (Cav3.1, Cav3.2, and Cav3.3), are now considered to play pivotal roles in processing of pain signals. Cav3.2 T-channels are functionally modulated by extracellular substances such as hydrogen sulfide and ascorbic acid, by intracellular signaling molecules including protein kinases, and by glycosylation. Cav3.2 T-channels are abundantly expressed in both peripheral and central endings of the primary afferent neurons, regulating neuronal excitability and release of excitatory neurotransmitters such as substance P and glutamate, respectively. Functional upregulation of Cav3.2 T-channels is involved in the pathophysiology of inflammatory, neuropathic, and visceral pain. Thus, Cav3.2 T-channels are considered to serve as novel targets for development of drugs for treatment of intractable pain resistant to currently available analgesics.
著者
Mi Eun Kim Hyung Keun Kim Hyeon-Young Park Dae Hyun Kim Hae Young Chung Jun Sik Lee
出版者
(公社)日本薬理学会
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.121, no.2, pp.148-156, 2013-02-20 (Released:2013-02-19)
参考文献数
26
被引用文献数
6 27

Baicalin from Scutellaria baicalensis is a major flavonoid constituent found in the traditional Chinese medicinal herb Baikal skull cap. It has been widely used for the treatment of various diseases such as pneumonia, diarrhea, and hepatitis. Recent studies have demonstrated that baicalin possesses a wide range of pharmacological and biological activities, including anti-inflammatory, anti-microbial, anti-oxidant, and anti-tumor properties. Specifically, its anti-inflammatory activity has been estimated in various animal models of acute and chronic inflammation; however, its effects on dendritic cells (DCs) maturation and immuno-stimulatory activities are still unknown. In this study, we attempted to determine whether baicalin could influence DC surface molecule expression, antigen uptake capacity, cytokine production, and capacity to induce T-cell differentiation. Baicalin was shown to significantly suppress the expression of surface molecules CD80, CD86, major histocompatibility complex (MHC) class I, and MHC class II as well as the levels of interleukin-12 production in lipopolysaccharide stimulated DCs. Moreover, baicalin-treated DCs showed an impaired induction of the T helper type 1 immune response and a normal cell-mediated immune response. These findings provide important understanding of the immunopharmacological functions of baicalin and have ramifications for the development of therapeutic adjuvants for the treatment of DCs-related acute and chronic diseases.
著者
Yasushi Fujio Makiko Maeda Tomomi Mohri Masanori Obana Tomohiko Iwakura Akiko Hayama Tomomi Yamashita Hiroyuki Nakayama Junichi Azuma
出版者
The Japanese Pharmacological Society
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.117, no.4, pp.213-222, 2011 (Released:2011-12-15)
参考文献数
74
被引用文献数
24 36

Postnatal cardiomyocytes have only limited capacity of proliferation. Therefore, the myocardium is intrinsically equipped with cardioprotective machineries and protects itself from pathological stresses. One of the most important cardioprotective systems is the signal network of autocrine/paracrine factors, including neurohumoral factors, growth factors, and cytokines. In this review, we focus on the roles of interleukin-6 (IL-6) family cytokines, also known as glycoprotein 130 (gp130) cytokines, in cardioprotection. These cytokines make a complex with their specific cytokine receptor α-subunits. The cytokine-receptor α-subunit complex binds to gp130, a common receptor of the IL-6 family, followed by the activation of JAK/STAT, ERK, and PI3 kinase/Akt pathways. In cardiomyocytes, signals through gp130 promote cell survival and angiogenesis through the JAK/STAT pathway. Activation of gp130 in cardiac stem cells induces their endothelial transdifferentiation, leading to neovascularization. Recently, accumulating evidence has revealed that altered JAK/STAT activity is associated with heart failure, suggesting that the JAK/STAT pathway is a therapeutic target against cardiovascular diseases. Interestingly, activation of the JAK/STAT pathway with interleukin-11 (IL-11) exhibits preconditioning effects in ischemia/reperfusion model. Moreover, IL-11 treatment after coronary ligation prevents cardiac remodeling through the JAK/STAT pathway. Since IL-11 is used for patients with thrombocytopenia, we propose that IL-11 is a candidate cytokine clinically available for cardioprotection therapy.
著者
Tsugunobu Andoh Qun Zhang Takumi Yamamoto Manabu Tayama Masao Hattori Ken Tanaka Yasushi Kuraishi
出版者
The Japanese Pharmacological Society
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.114, no.3, pp.292-297, 2010 (Released:2010-11-16)
参考文献数
30
被引用文献数
7 17

Recently, we showed that a methanol extract of Ganoderma lucidum inhibits scratching, an itch-related response, induced by intradermal injections of some pruritogens in mice. The present study investigated whether G. lucidum extract would inhibit allergic itch. In mice sensitized with an extract of salivary gland of mosquito (ESGM), an intradermal injection of ESGM elicited scratching, which was suppressed by oral administration of G. lucidum extract (100 and 300 mg/kg). The scratching was inhibited by the H1 histamine–receptor antagonist azelastine, but not by the peripherally acting H1-antagonist terfenadine, at the oral dose of 30 mg/kg. In sensitized mice, ESGM increased the activity of cutaneous nerve, which was suppressed by G. lucidum extract (300 mg/kg). Although terfenadine (30 mg/kg) inhibited plasma extravasation induced by ESGM in the sensitized mice, G. lucidum extract (300 mg/kg) was without effect. These results suggest that G. lucidum extract relieves allergic itch through a peripheral action. The results support the idea that mast cells and H1 histamine receptors are not the primary sites of the antipruritic action of G. lucidum extract.
著者
Shin Tokunaga Yasuhiro Takeda Kazuaki Shinomiya Masahiro Hirase Chiaki Kamei
出版者
The Japanese Pharmacological Society
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.103, no.2, pp.201-206, 2007 (Released:2007-02-20)
参考文献数
29
被引用文献数
29 36

The present study was undertaken to investigate the effects of some H1-antagonists on the sleep-wake cycle in sleep-disturbed rats in comparison with those of nitrazepam. Electrodes were chronically implanted into the frontal cortex and the dorsal neck muscle of rats for the electroencephalogram (EEG) and electromyogram (EMG), respectively. EEG and EMG were recorded with an electroencephalograph. SleepSign ver. 2.0 was used for EEG and EMG analysis. The total times of waking, non-rapid eye movement (non-REM), and rapid eye movement (REM) sleep were measured from 10:00 to 16:00. Nitrazepam showed a significant decrease in sleep latency, total waking time, and delta activity and an increase in the total non-REM sleep time. A significant decrease in the sleep latency was observed with diphenhydramine, chlorpheniramine, and cyproheptadine. Cyproheptadine also caused a significant decrease in the total waking time and increases in total non-REM sleep time, REM sleep time, slow wave sleep, and delta activity, although no remarkable effects were observed with diphenhydramine and chlorpheniramine. In conclusion, cyproheptadine can be useful as a hypnotic, having not only sleep inducing-effects, but also sleep quantity- and quality-increasing effects.
著者
Yoshiomi Oka Shinichi Iwai Hitoshi Amano Yuko Irie Kentaro Yatomi Kakei Ryu Shoji Yamada Katsunori Inagaki Katsuji Oguchi
出版者
The Japanese Pharmacological Society
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
pp.1112190632, (Released:2011-12-21)
参考文献数
60
被引用文献数
82 120

Matrix metalloproteinases (MMPs) play an important role in degeneration of the matrix associated with bone and cartilage. Regulation of osteoclast activity is essential in the treatment of bone disease, including osteoporosis and rheumatoid arthritis. Polyphenols in green tea, particularly epigallocatechin-3-gallate (EGCG), inhibit MMPs expression and activity. However, the effects of the black tea polyphenol, theaflavin-3,3′-digallate (TFDG), on osteoclast and MMP activity are unknown. Therefore, we examined whether TFDG and EGCG affect MMP activity and osteoclast formation and differentiation in vitro. TFDG or EGCG (10 and 100 μM) was added to cultures of rat osteoclast precursors cells and mature osteoclasts. Numbers of multinucleated osteoclasts and actin rings decreased in polyphenol-treated cultures relative to control cultures. MMP-2 and MMP-9 activities were lower in TFDG- and EGCG-treated rat osteoclast precursor cells than in control cultures. MMP-9 mRNA levels declined significantly in TFDG-treated osteoclasts in comparison to control osteoclasts. TFDG and EGCG inhibited the formation and differentiation of osteoclasts via inhibition of MMPs. TFDG may suppress actin ring formation more effectively than EGCG. Thus, TFDG and EGCG may be suitable agents or lead compounds for the treatment of bone resorption diseases.
著者
Yuko Taki Yuko Yamazaki Fumio Shimura Shizuo Yamada Keizo Umegaki
出版者
The Japanese Pharmacological Society
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.109, no.3, pp.459-462, 2009 (Released:2009-03-20)
参考文献数
14
被引用文献数
13 20

A single dose by gavage of bilobalide (30 mg/kg) was found to produce a time-dependent induction of hepatic cytochrome P450 (CYP) enzyme activity and protein expression in rats. An RT-PCR study further showed that mRNA expression of CYP2B was maximal at 6 h. Plasma and liver bilobalide concentration in rats following administration of Ginkgo biloba extract equivalent to bilobalide of approximately 40 mg/kg showed a similar response to that exhibited by mRNA expression. These findings suggest that bilobalide markedly induced hepatic CYPs, but the induction could be mitigated due to rapid elimination from the liver.
著者
Yoshinobu Kiso
出版者
The Japanese Pharmacological Society
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.115, no.4, pp.471-475, 2011 (Released:2011-04-15)
参考文献数
28
被引用文献数
19 23

Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are major constituents of cell membranes and play important roles in preserving physiological and psychological function. Recently, data from several studies have indicated that impairments in long-term potentiation (LTP), the process underlying plasticity in synaptic connections, are associated with a decrease in membrane ARA and DHA in aged rats; and treatment of aged rats with either of these polyunsaturated fatty acids (PUFAs) reverses age-related decrease in LTP and the decrease in membrane fatty acid concentration. This review focuses on our recent findings concerning the effects of ARA and DHA on the age-related decline in the function of the brain and cardiovascular system. ARA supplementation decreased P300 latency and increased P300 amplitude of event-related potentials in healthy elderly men. Cognitive impairments in patients with mild cognitive impairment (MCI) and patients with organic brain lesions were significantly improved with ARA and DHA supplementation. ARA and DHA supplementation also increased coronary flow velocity reserve in elderly individuals; this suggests beneficial effects of PUFAs on coronary microcirculation. In conclusion, ARA and DHA may be beneficial in preventing and/or improving age-related declines in brain and cardiovascular system function.
著者
Takashi Ebisawa
出版者
The Japanese Pharmacological Society
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
vol.103, no.2, pp.150-154, 2007 (Released:2007-02-20)
参考文献数
31
被引用文献数
59 77

Genetic analyses of circadian rhythm sleep disorders (CRSD), such as familial advanced sleep phase syndrome (ASPS) and delayed sleep phase syndrome (DSPS), and morningness-eveningness revealed the relationship between variations in clock genes and diurnal change in human behaviors. Variations such as T3111C in the Clock gene are reportedly associated with morningness-eveningness. Two of the pedigrees of familial ASPS (FASPS) are caused by mutations in clock genes: the S662G mutation in the Per2 gene or the T44A mutation in the casein kinase 1 delta (CK1δ) gene, although these mutations are not found in other pedigrees of FASPS. As for DSPS, a missense variation in the Per3 gene is identified as a risk factor, while the one in the CK1ε gene is thought to be protective. These findings suggest that further, as yet unidentified, gene variations are involved in human circadian activity. Many of the CRSD-relevant variations reported to date seem to affect the phosphorylation status of the clock proteins. A recent study using mathematical models of circadian rhythm generation has provided a new insight into the role of phosphorylation in the molecular mechanisms of these disorders.
著者
Eiichi Hinoi Yukio Yoneda
出版者
The Japanese Pharmacological Society
雑誌
Journal of Pharmacological Sciences (ISSN:13478613)
巻号頁・発行日
pp.1106090573, (Released:2011-06-10)
参考文献数
67
被引用文献数
12 21

The prevailing view is that L-glutamate (Glu) functions as an excitatory amino acid neurotransmitter through a number of molecular machineries required for the neurocrine signaling at synapses in the brain. These include Glu receptors for signal input, Glu transporters for signal termination, and vesicular Glu transporters for signal output through exocytotic release. Although relatively little attention has been paid to the functional expression of these molecules required for glutamatergic signaling in peripheral tissues, recent molecular biological analyses including ours give rise to a novel function for Glu as an extracellular signal mediator in the autocrine and/or paracrine system in several peripheral and non-neuronal tissues, including bone and cartilage. In particular, a drastic increase is demonstrated in the endogenous levels of both Glu and aspartate in the synovial fluid with intimate relevance to increased edema and sensitization to thermal hyperalgesia in experimental arthritis models. However, to date, there is only limited information about the physiological and pathological significance of glutamatergic signaling machineries expressed by articular synovial tissues. In this review, we have outlined the role of Glu in synovial fibroblasts in addition to the possible involvement of glutamatergic signaling machineries in the pathogenesis of joint diseases such as rheumatoid arthritis.