著者
北條 慎太郎 深田 俊幸
出版者
日本微量元素学会
雑誌
Biomedical Research on Trace Elements (ISSN:0916717X)
巻号頁・発行日
vol.23, no.1, pp.6-13, 2012 (Released:2012-10-01)
参考文献数
30

Zinc (Zn) confers structure and catalytic functions to a number of enzymes and transcription factors, and its homeostasis is tightly controlled by Zn transporters (SLC39/ZIP: importers, SLC30/ZnT: exporters). Zn is an essential trace element, and its deficiency is associated with abnormal endocrine-system reactions leading to vertebral growth retardation and metabolic disorders. However, the molecular mechanisms by which Zn affects the endocrine system remain to be clarified. Here we examined the in vivo roles of SLC39A14, a member of the SLC39 family, by generating its deficient mice. The Slc39a14-knockout (KO) mice exhibit growth retardation accompanied by abnormal chondrocyte differentiation, reduced growth hormone production, and an impaired gluconeogenic program. We found that these phenotypes are attributable to impaired G-protein coupled receptor (GPCR)-mediated signaling, via the parathyroid hormone 1 receptor (PTH1R), growth hormone releasing hormone receptor (GHRHR), and glucagon receptor (GCGR), respectively, due to the degradation of cyclic adenosine monophosphate (cAMP) by the higher phosphodiesterase (PDE) activity in the Slc39a14-KO mice. Thus, the Zn transporter SLC39A14 is a new regulator for GPCR-mediated signaling for systemic growth.
著者
北條 慎太郎
出版者
公益社団法人 日本薬学会
雑誌
ファルマシア (ISSN:00148601)
巻号頁・発行日
vol.54, no.9, pp.902, 2018 (Released:2018-09-01)
参考文献数
3

体液性免疫は獲得免疫における主要な機構であり,ウイルス・細菌感染に対するB細胞の抗体産生を主軸とした免疫系を指す.体液性免疫応答の過程において,B細胞はヘルパーT細胞からサイトカインや補助刺激シグナルを受けて胚中心(germinal center:GC)とよばれる特殊な構造体を二次リンパ組織上に構築する.さらにGC B細胞は体細胞突然変異とクラススイッチを経て,抗原に対して高い親和性を有する記憶B細胞や長期的に生存可能な抗体産生細胞へと分化する(GC反応).GC B細胞の分化には濾胞ヘルパーT(t follicular helper:Tfh)細胞(転写因子Bcl6,ケモカイン受容体CXCR5,アポトーシス関連タンパクPD-1共陽性)との相互作用が必須であり,Tfh細胞の細胞数が厳密に制御されることにより自己寛容が誘導される.逆に,自己反応性のTfh細胞の増多は自己免疫疾患の発症と関連する.最近,胚中心に認められるTfh細胞集団の中に,免疫系を負に制御することで知られる制御性T細胞(転写因子Foxp3陽性)の特徴を有する濾胞制御性T(t follicular regulatory:Tfr)細胞とよばれる新規の細胞亜集団が発見され,脚光を浴びている.このTfr細胞は,in vivoにおいてGC反応を負に制御することが知られているが,これまでTfr細胞の病理学的な役割は不明であった.本稿では,Fuらによって報告されたTfr細胞による自己免疫疾患の制御に関わる知見を紹介する.なお,本稿は下記の文献に基づいて,その研究成果を紹介するものである.1) Chung Y. et al., Nat. Med., 17, 983-988(2011).2) Linterman M. A. et al., Nat. Med., 17, 975-982(2011).3) Fu W. et al., J. Exp. Med., 215, 815-825(2018).
著者
北條 慎太郎
出版者
独立行政法人理化学研究所
雑誌
若手研究(B)
巻号頁・発行日
2013-04-01

申請者は、亜鉛トランスポーターが輸送する亜鉛イオンがシグナル因子として機能し(亜鉛シグナル)、骨軟骨代謝や免疫応答に深く関わることを明らかにしてきた。亜鉛の欠乏症は重篤な免疫機能の低下を引き起こすことが知られているが、亜鉛や亜鉛トランスポーターがどのように免疫系を制御しているのか、その分子機序は明らかにされていない。本申請研究は、免疫系の一つの柱である抗体産生に関わるB細胞において高い発現を示す亜鉛トランスポーター ZIP10に注目し、B細胞特異的にZIP10を欠損したマウスを構築することによってその機能を解析した。ZIP10欠損マウスでは末梢の成熟B細胞の減少が認められ、それが関与する抗原特異的な抗体産生能が減弱していた。また、ZIP10を欠損したB細胞の寿命は野生型と比較して短く、この表現型はB細胞内因性の異常に起因していることが判明した。成熟B細胞の生存や抗体産生能はB細胞受容体(BCR)シグナルによって制御されていることが知られている。ZIP10欠損B細胞では、BCR刺激依存的な細胞増殖能の低下が認められ、BCRシグナル伝達の異常が確認された。興味深いことに、予想に反して、ZIP10欠損B細胞ではBCRシグナル伝達の中心的な役割を果たすSrcファミリーキナーゼ LYNの活性化がBCR刺激後に亢進しており、この原因の一つとしてLYNの制御因子であるCD45の脱リン酸化活性が減弱していることがわかった。すなわち、今回得られた結果は、ZIP10がBCRシグナル伝達における新規のレギュレーターであり、CD45の活性を介してシグナル強度を調節することによって、B細胞の機能を制御していることを明示するものである (論文投稿準備中)。本研究は、第八回 トランスポーター研究会年会 優秀発表賞 および 第86回日本生化学会大会 鈴木紘一メモリアル賞 の表彰を受けた。