著者
上野 寛 森 博一 碓井 勇二 宮村 淳一 吉川 一光 浜田 信生
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.47, no.5, pp.689-694, 2002-11-29 (Released:2017-03-20)
参考文献数
14

We studied high-frequency earthquake swarm associated with the eruption of the Usu volcano in 2000 using the data observed by a national seismic network in southern Hokkaido. To get a precise hypocenter location, we applied the double-difference method and station correction to hypocenter determination. Systematic shift of epicenters possibly caused by heterogeneous velocity structure of the upper crust is needed to be consistent with the initial motions of the seismograms at the nearest station. Concentration of hypocenters under the northern flank of the volcano in the initial stage suggests that the magma started its activity at about 5 km in depth at the region. Concentric expansion of swarm area occurred before the eruption and formed doughnut pattern of which center is located near the summit of the volcano. Doughnut pattern may represent relaxation of stress under the volcano which is caused by magma movement and pore pressure change under the volcano.
著者
中村 雅基 金沢 敏彦 佐藤 利典 塩原 肇 島村 英紀 仲西 理子 吉田 康宏 趙 大鵬 吉川 一光 高山 博之 青木 元 黒木 英州 山崎 貴之 笠原 順三
出版者
気象庁気象研究所
雑誌
気象研究所研究報告 (ISSN:0031126X)
巻号頁・発行日
vol.53, no.1, pp.1-28, 2002
被引用文献数
5

中部日本におけるP波およびS波の3次元速度構造を地震波走時トモグラフィーを用いて求めた。その際、定常観測点で得られる自然地震を対象とした観測値だけでなく、人工地震や海域における臨時観測点等を用いた観測値を積極的に利用した。得られた成果は以下の通りである。沈み込むフィリピン海プレートと思われる高速度域が検出された。フィリピン海プレートは、少し高角度で沈み込み始め、その後なだらかになり、最後は高角に沈み込んでいる。35°N、136.5°E付近では、フィリピン海プレートが分かれている。将来発生が懸念されている東海地震の固着域の北西隣は、プレート間カップリングが弱い。35.6°Nから35.8°N、137.5°E、深さ100kmから200km付近で、非地震性のフィリピン海プレートが検出された。
著者
浜田 信生 野坂 大輔 小林 正志 吉川 一光 石垣 祐三 田利 信二朗
出版者
公益社団法人 日本地震学会
雑誌
地震 第2輯 (ISSN:00371114)
巻号頁・発行日
vol.64, no.4, pp.197-209, 2012-06-25 (Released:2012-08-08)
参考文献数
28

Matsushiro earthquake swarm is a most well known and well studied earthquake swarm in the history of seismology. From viewpoints of geophysics, geology and geochemistry, various observations, field surveys and analyses had been made to reveal characteristics of the swarm. On the basis of these studies, several models had been proposed to explain why and how the swarm originated and developed. However, majority of studies had focused on the activity around the climatic stage of the swarm in 1966 and so far, studies on the initial stage of the swarm in mid 1965 had remained few due to lack of sufficient observation data. The exact area where the swarm was born had not been known and the swarm was vaguely believed to originate from the area around Mt. Minakami in former Matsushiro town (now belongs to Nagano city). Considering that the manner of initial development of swarm activity represents an important characteristic of the swarm earthquake, we tried to get more clear view about initial stage of the swarm activity in this study. We re-investigated seismograms obtained by routine observation and studied seismograms of temporal stations for the first time which had not been processed yet. By scanning analogue seismograms, we made a complete data set of S-P times with high precision for each station. Although the data set of S-P times from two stations are not sufficient for conventional hypocenter location, we were able to narrow down a possible source area of the swarm activity under the reasonable assumptions. By considering direction of initial motion of P waves and assuming local velocity model of the upper crust in the region and plausible focal depth of 4.5km of the swarm earthquake, we found that the area of swarm in the very beginning in August, 1965 is located about 4km north-east of the Matsushiro earthquake fault (MEF) in former Wakaho town near its border with former Matsushiro town. Size of the initial swarm area was 3-4km in diameter. While swarm activity in the initial region was gradually decaying in September new swarm activity appeared separately from the initial swarm area around southern and south-west part of the MEF. Activity in the new swarm area had been increasing and it was developed to more intense swarm after October, 1965 when establishment of temporal seismic station network of the Earthquake Research Institute, University of Tokyo enabled detailed hypocenter location. The new swarm area coincides with the area where large amount of ground water moved upward and was released on the ground surface in the climatic stage of the swarm. It was well known that source area of the swarm was split and expanded toward north-east and south-west after March, 1967 in its climatic stage. Present study on the initial development of swarm area suggested that characteristics of the Matsushiro earthquake swarm such as splitting and expansion of its source area toward northeast and southwest were inherent in their early stage of the activity in August and September, 1965.