著者
山崎 美和恵
出版者
一般社団法人 日本物理学会
雑誌
日本物理学会誌 (ISSN:00290181)
巻号頁・発行日
vol.64, no.12, pp.920-923, 2009-12-05 (Released:2020-01-18)
参考文献数
30

湯浅年子(1909-1980)は,日本初の女性原子核物理学者である.第2次世界大戦中と戦後,フランスの研究所にめって,主に核の放射性崩壊と核反応を研究,多くの成果を挙げた.様々な文化活動を通して日仏の文化交流に大きく貢献し,また日本の若い女性科学者の援助育成にも力を注いでいた.湯浅の著作物,『パリ随想』等々の内容は,科学と人生への考察に溢れている.
著者
伊藤 大介 小林 徹郎 山崎 美和恵 南 繁夫
出版者
素粒子論グループ 素粒子研究編集部
雑誌
素粒子論研究 (ISSN:03711838)
巻号頁・発行日
vol.12, no.5, pp.520-529, 1956-08

最近,CosmotronやBevatronのような高エネルギー加速器によるπ-N相互作用に関する実験の結果,π-N衝突の全断面積σ_<t0t>(-σ_<elastic>+σ_<inelastic>)に第二、第三の極大が存在することが略々確かになった。周知の通り、O.2 Bev前後に於ける第一の極大は、I=J=3/2 stateの共鳴散乱として解釈されているものであるが、第二、第三の極大も果して"物理的核子"の特別な状態の共鳴現象によるものであるか、或は他の機構によるものであるか、先ず明らかにされなければならぬ問題である。この問題に関して、先ずC.N.Yangは 0.8 Bev附近に於ける第二の極大が"物理的核子"の特定の状態の共鳴による散乱であると解し得るためには、共鳴状態のJが相当大きなものでなければならぬことを示している。第二極大の発生機構を考察する場合、第一極大の場合と著しく事情が異るのは、後者の場合にはなかった非弾性衝突(即ち中間子の多重発生等)の存在である。第二極大の起る0.8 Bev附近ではσ_<elastic>&ap;σ_<inelastic>である。このような大きな非弾性散乱の存在は当然弾性散乱にも大きな影響を及ぼすはずである。武田氏は、入射中間子が、核子の固有場の中間子と衝突し、これを共鳴的にたヽき出すと考えて、第二極大の存在を説明しておられる。またSternheimerが分散公式を用いて、前方散乱の振巾をを計算し、高エネルギーに於ては、Dispersive Partに比し、Absorptive Partが非常に大きく、第二極大附近で特にAbsorptive Partが大きくなつていることを明らかにした。これ等の分析の結果から、第二極大の発生機構は、第一極大の場合と異り、非弾性衝突が非常に大きな役割を演じていることが判明して来た。非弾性衝突の存在によつて、弾性散乱の受ける影響は、Shadow Effectとして知られている。我々は以前に1.4 Bevに於けるπ-N衝突は、影散乱のみとして、説明出来ることを示した。即ち1.4 Bev程度の高エネルギーでは、非弾性衝突の断面σ_<inel>を正しく与えええる理論さえあれば、弾性散乱の断面σ_<el>はその影散乱として求まり、全断面σ_<t0t>=σ<el>+σ<inel>も実験と一致するのである。換言すればこのような高エネルギーでは、非弾性衝突が近似的にπ-N衝突の全体を支配しているので、その理論的考察は非弾性衝突の解明に集約されることになる。若し高エネルギー領域で成立ったこのような近似が第二極大の起る0.8 Bevまで成立つならば、第二極大解明の鍵は非弾性衝突にあることになる。この可能性を吟味することが本論文の目的である。結果を要約すれば、π-P衝突で、実測された非弾性散乱の断面積σ^<exp>_<inel>を用い、これから影散乱のみという近似で計算したσ_<elastic>及びσ_<t0t>は、第1図に模式的に示すように、1.0 Bev以上では実験と一致する。しかし1.0 Bev以下では実験と合わなくなる。弾性散乱の角分布も1.0 Bev以上では影散乱のみとして実験とよく合うが1.0 Bev以下では合わなくなるかもしれない(現在比較できる正確な実験は1.0 Bev > E_π > E_<th>間に存在しない)1.0 Bev以下ではσ_<inel>が減少しはじめるのと、低エネルギーの場合と同じ機構による散乱が生き残っているので影散乱のみという近似は成立たなくなるのであろう。しかし第1図に示すように、1.0 Bevに於ける影散乱として計算したσ_<el>,σ_<t0t>は既にthresholdに於けるσ_<t0t>より大きい。而も1.0 Bevに於けるσ_<t0t>もσ_<el>も低エネルギーまで延長すれば結局thresholdに於けるσ_<t0t>に接続しなければならぬのであるから、σ_<t0t>にもσ_<el>にも1.0 BevとE_<threshold>の間に少くも一回極大が存在するはずである。このようなわけで、第二極大の存在の説明には非弾性衝突、即ち、多重発生過程が重大な役割を演じていることを知ることが出来る。実際1.0 Bev以上で多重発生の正しい理論を構成することだけで、第二極大の存在を間接的に示すことが出来ることになる。しかし、第二極大の直接の分析のためには、E_<th>&harr;1.0 Bev間のπ-N相互作用を分析しなければならない。この領域の分析は非常に困難であろうが、逆に、核子の構造に対して多くの情報は期待出来ると予想される領域でもある。これについては追々分析をすすめる予定である。