著者
小谷 眞一 樋口 保成 内山 耕平 熊谷 隆 楠岡 成雄 厚地 淳 杉田 洋
出版者
大阪大学
雑誌
基盤研究(A)
巻号頁・発行日
1995

この研究は平成7年度と8年度にわたって行った。内容については研究成果報告書にあるように我国で行われている確立論の多くの分野にわたることについて計12日の研究集会を開き,研究情報の交換を行った。特にその中でも,数学の他の分野,あるいは数学以外の分野との交流が多く持てたことに大へん意義があった。統計物理,数理生物,数理ファイナンス,数学の分野では討論,微分方程式,スペクトル理論,微分幾何,等々関連する分野の研究に親展があった。また7年度と8年度に1度づつ夏の学校を開き,若い研究者,学生に対して現在活発に進行中の話題,つまり「流体力学極限」と「エルゴ-ト理論と数論」の2つの主題について,専門の研究者に連続講演をお願いした。これは,若い世代に自分の研究の方向付けを与えるものとして非常に意義深いものであったと思う。さらに各分野を統合する研究集会を各年の12月に開催した。これにより,ともすれば狭い専門に限られて関心を広げることができたと思う。
著者
樋口 保成 中屋敷 厚 中西 康剛 佐々木 武 高山 信毅 高野 恭一
出版者
神戸大学
雑誌
一般研究(C)
巻号頁・発行日
1992

本研究の主要な成果は大別して3つの部分に分かれる。その第一は相転移モデルの代数解析的、確率論的研究の部分であり、第二は超幾何微分方程式系の幾何学的、解析的な研究、そして第三は結び目の理論の研究の部分である。これらの三つの部分はゆるやかだが互いに影響を及ぼしあっており、特に本研究では代数的手法がその相互をつなぐ主要要素となった様に思われる。まとめて見ると予定以上に豊かな成果を得ることができた。以下、主要な成果のみを列挙する。第一の部分ではXXZ模型及び8頂点模型の一点相関関数の形を求めることに成功した(中屋敷)。また、二次元イジング模型におけるパーコレーションの相ダイアグラムを定性的な意味では完全に決定することができた(樋口)。一方、超幾何微分方程式系の研究では、E(3,6)の局所解を構成し、そのモノドロ〓郡の形算に成功した(佐々木、高山)。また、ガウスの超幾何関数のゲルファントによる多変数への拡張を合流型について行ない、最も基本的な性質を調べている。(高野)この多変数型の超幾何関数については、記億をもつランダム・ウォークの再帰性を調べるときにも現われることが最近わかった。これは新しいタイプの超幾何関数に対するアプローチになるようであり、今後ますます研究を深める必要が有ると思われる。最後の結び目の理論の研究においては、どんな結び目でも絡み数が偶数である平凡な結び目で偶数回ひねることを有限回行なえば平凡にできるという結果を含む一般的な結果を得ている(中西)。以上の数学的成果の他にも、重要な成果の一つとして、これらの計算の一部を支える計算環論の種々のアルゴリズムを組み込んだプログラム言語Kanを開発した(高山)ことを挙げたい。このソフトはインターネット上で公開している。