著者
Madoka NAKAJIMA Shigeki YAMADA Masakazu MIYAJIMA Kazunari ISHII Nagato KURIYAMA Hiroaki KAZUI Hideki KANEMOTO Takashi SUEHIRO Kenji YOSHIYAMA Masahiro KAMEDA Yoshinaga KAJIMOTO Mitsuhito MASE Hisayuki MURAI Daisuke KITA Teruo KIMURA Naoyuki SAMEJIMA Takahiko TOKUDA Mitsunobu KAIJIMA Chihiro AKIBA Kaito KAWAMURA Masamichi ATSUCHI Yoshihumi HIRATA Mitsunori MATSUMAE Makoto SASAKI Fumio YAMASHITA Shigeki AOKI Ryusuke IRIE Hiroji MIYAKE Takeo KATO Etsuro MORI Masatsune ISHIKAWA Isao DATE Hajime ARAI The research committee of idiopathic normal pressure hydrocephalus
出版者
The Japan Neurosurgical Society
雑誌
Neurologia medico-chirurgica (ISSN:04708105)
巻号頁・発行日
vol.61, no.2, pp.63-97, 2021 (Released:2021-02-15)
参考文献数
286
被引用文献数
88 189

Among the various disorders that manifest with gait disturbance, cognitive impairment, and urinary incontinence in the elderly population, idiopathic normal pressure hydrocephalus (iNPH) is becoming of great importance. The first edition of these guidelines for management of iNPH was published in 2004, and the second edition in 2012, to provide a series of timely, evidence-based recommendations related to iNPH. Since the last edition, clinical awareness of iNPH has risen dramatically, and clinical and basic research efforts on iNPH have increased significantly. This third edition of the guidelines was made to share these ideas with the international community and to promote international research on iNPH. The revision of the guidelines was undertaken by a multidisciplinary expert working group of the Japanese Society of Normal Pressure Hydrocephalus in conjunction with the Japanese Ministry of Health, Labour and Welfare research project. This revision proposes a new classification for NPH. The category of iNPH is clearly distinguished from NPH with congenital/developmental and acquired etiologies. Additionally, the essential role of disproportionately enlarged subarachnoid-space hydrocephalus (DESH) in the imaging diagnosis and decision for further management of iNPH is discussed in this edition. We created an algorithm for diagnosis and decision for shunt management. Diagnosis by biomarkers that distinguish prognosis has been also initiated. Therefore, diagnosis and treatment of iNPH have entered a new phase. We hope that this third edition of the guidelines will help patients, their families, and healthcare professionals involved in treating iNPH.
著者
Kittipong Srivatanakul Satomi Asai Akihiro Hirayama Hideaki Shigematsu Makiko Niita Tomoko Kawakami Takatoshi Sorimachi Mitsunori Matsumae
出版者
The Japanese Society for Neuroendovascular Therapy
雑誌
Journal of Neuroendovascular Therapy (ISSN:18824072)
巻号頁・発行日
pp.sr.2020-0075, (Released:2020-04-21)
参考文献数
11
被引用文献数
6

The crisis of the coronavirus disease (COVID-19) is causing damage to the social and medical community. However, extreme emergency neuro-interventions such as mechanical thrombectomy still require the healthcare workers to offer the appropriate treatment while preventing further spread of the infection. This article outlines the necessary steps in managing a possible COVID-19 patient starting from patient screening to personnel infection and environmental contamination measures.
著者
Akihiro Hirayama Kittipong Srivatanakul Hideaki Shigematsu Kazuma Yokota Takatoshi Sorimachi Mitsunori Matsumae
出版者
The Japanese Society for Neuroendovascular Therapy
雑誌
Journal of Neuroendovascular Therapy (ISSN:18824072)
巻号頁・発行日
pp.tn.2020-0192, (Released:2021-03-09)
参考文献数
8

Objective: We report the utility of microcatheter reshaping by referring to fusion images with 3D-DSA and microcatheter 3D images made using non-subtraction and non-contrast (non-SC) rotational images.Case Presentations: Case 1: The patient was a 74-year-old man who had an internal carotid-anterior choroidal artery bifurcation aneurysm with a tortuous proximal parent artery. The initial attempt to introduce the microcatheter into the aneurysm was unsuccessful. During this unsuccessful microcatheter introduction, we created fusion images with 3D-DSA and microcatheter 3D images by acquiring positional information of the microcatheter using the non-SC method. By reshaping the microcatheter with reference to the fusion images, the direction of the distal end of the microcatheter was reshaped to be in accordance with the long axis of the aneurysm, a shape more suitable for coiling. Case 2: The patient was a 47-year-old man who had an anterior communicating (A-com) artery aneurysm with two daughter sacs. We successfully placed two microcatheters in the direction of each sac to make more stable framing by referring to 3D fusion images after the first microcatheter was positioned. In both cases, microcatheter reshaping was necessary because of the vessel and aneurysm anatomy. We have used this technique successfully in 15 patients, for both ruptured and unruptured aneurysms. The average number of microcatheter reshaping was 1.3 times.Conclusion: This method provides effective microcatheter reshaping for coil embolization of aneurysms, particularly those with differences between the axis of the parent artery and the vertical axis of aneurysm, or with a tortuous proximal artery.
著者
Mitsunori Matsumae Jun Nishiyama Kagayaki Kuroda
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2021-0116, (Released:2021-12-09)
参考文献数
229
被引用文献数
12

One of the major issues in the surgical treatment of gliomas is the concern about maximizing the extent of resection while minimizing neurological impairment. Thus, surgical planning by carefully observing the relationship between the glioma infiltration area and eloquent area of the connecting fibers is crucial. Neurosurgeons usually detect an eloquent area by functional MRI and identify a connecting fiber by diffusion tensor imaging. However, during surgery, the accuracy of neuronavigation can be decreased due to brain shift, but the positional information may be updated by intraoperative MRI and the next steps can be planned accordingly. In addition, various intraoperative modalities may be used to guide surgery, including neurophysiological monitoring that provides real-time information (e.g., awake surgery, motor-evoked potentials, and sensory evoked potential); photodynamic diagnosis, which can identify high-grade glioma cells; and other imaging techniques that provide anatomical information during the surgery. In this review, we present the historical and current context of the intraoperative MRI and some related approaches for an audience active in the technical, clinical, and research areas of radiology, as well as mention important aspects regarding safety and types of devices.
著者
Mitsunori MATSUMAE Kagayaki KURODA Satoshi YATSUSHIRO Akihiro HIRAYAMA Naokazu HAYASHI Ken TAKIZAWA Hideki ATSUMI Takatoshi SORIMACHI
出版者
The Japan Neurosurgical Society
雑誌
Neurologia medico-chirurgica (ISSN:04708105)
巻号頁・発行日
vol.59, no.4, pp.133-146, 2019 (Released:2019-04-15)
参考文献数
120
被引用文献数
14 31

The “cerebrospinal fluid (CSF) circulation theory” of CSF flowing unidirectionally and circulating through the ventricles and subarachnoid space in a downward or upward fashion has been widely recognized. In this review, observations of CSF motion using different magnetic resonance imaging (MRI) techniques are described, findings that are shared among these techniques are extracted, and CSF motion, as we currently understand it based on the results from the quantitative analysis of CSF motion, is discussed, along with a discussion of slower water molecule motion in the perivascular, paravascular, and brain parenchyma. Today, a shared consensus regarding CSF motion is being formed, as follows: CSF motion is not a circulatory flow, but a combination of various directions of flow in the ventricles and subarachnoid space, and the acceleration of CSF motion differs depending on the CSF space. It is now necessary to revise the currently held concept that CSF flows unidirectionally. Currently, water molecule motion in the order of centimeters per second can be detected with various MRI techniques. Thus, we need new MRI techniques with high-velocity sensitivity, such as in the order of 10 μm/s, to determine water molecule movement in the vessel wall, paravascular space, and brain parenchyma. In this paper, the authors review the previous and current concepts of CSF motion in the central nervous system using various MRI techniques.
著者
Satoshi Yatsushiro Saeko Sunohara Mitsunori Matsumae Hideki Atsumi Tomohiko Horie Nao Kajihara Kagayaki Kuroda
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2021-0126, (Released:2022-02-16)
参考文献数
33
被引用文献数
4

Purpose: To extract the status of hydrocephalus and other cerebrospinal fluid (CSF)-related diseases, a technique to characterize the cardiac- and respiratory-driven CSF motions separately under free breathing was developed. This technique is based on steady-state free precession phase contrast (SSFP-PC) imaging in combination with a Stockwell transform (S-transform).Methods: 2D SSFP-PC at 3 T was applied to measure the CSF velocity in the caudal-cranial direction within a sagittal slice at the midline (N = 3) under 6-, 10-, and 16-s respiratory cycles and free breathing. The frequency-dependent window width of the S-transform was controlled by a particular scaling factor, which then converted the CSF velocity waveform into a spectrogram. Based on the frequency bands of the cardiac pulsation and respiration, as determined by the electrocardiogram (ECG) and respirator pressure sensors, Gaussian bandpass filters were applied to the CSF spectrogram to extract the time-domain cardiac- and respiratory-driven waveforms.Results: The cardiac-driven CSF velocity component appeared in the spectrogram clearly under all respiratory conditions. The respiratory-driven velocity under the controlled respiratory cycles was observed as constant frequency signals, compared to a time-varying frequency signal under free breathing. When the widow width was optimized using the scale factor, the temporal change in the respiratory-driven CSF component was even more apparent under free breathing.Conclusion: Velocity amplitude variations and transient frequency changes of both cardiac- and respiratory-driven components were successfully characterized. These findings indicated that the proposed technique is useful for evaluating CSF motions driven by different cyclic forces.
著者
Akihiro Hirayama Satomi Asai Kittipong Srivatanakul Kazuma Yokota Hideaki Shigematsu Takatoshi Sorimachi Mitsunori Matsumae
出版者
The Japanese Society for Neuroendovascular Therapy
雑誌
Journal of Neuroendovascular Therapy (ISSN:18824072)
巻号頁・発行日
vol.15, no.8, pp.484-488, 2021 (Released:2021-08-20)
参考文献数
17

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SAR-CoV-2), which appeared at the end of 2019 and has spread rapidly worldwide. In Japan, the increasing number of people infected with SAR-CoV-2 is also a cause of concern for physicians managing stroke patients. From the perspective of viral transmission in the hospital, stroke physicians must determine whether patients who have been transported by emergency have confirmed or suspected COVID-19. For this reason, stroke physicians must also understand about the characteristics and accuracy of the test for COVID-19 diagnosis. This article describes the sensitivity of the clinical symptoms, imaging investigations such as chest radiography and chest CT, and accuracy of nucleic-acid amplification tests and antigen tests used in the diagnosis of COVID-19. However, it should be noted that the accuracy of specimen tests may change depending on the collection site, timing, and method, because positive results in these tested specimens depend on the viral loads. In performing medical treatment for stroke, high accuracy and rapid inspection for COVID-19 is desired, but this is not currently available. For acute stroke treatment, such as thrombectomy, we recommend that these emergency patients, who are suspected of COVID-19 by clinical symptoms and image investigations, should be treated with implementation of strict infection control against droplets, contact, and airborne transmission until the most sensitive polymerase chain reaction test result is confirmed as negative.
著者
Hideki ATSUMI Tanefumi BABA Azusa SUNAGA Yumetaro SAKAKIBARA Yoichi NONAKA Takatoshi SORIMACHI Mitsunori MATSUMAE
出版者
The Japan Neurosurgical Society
雑誌
Neurologia medico-chirurgica (ISSN:04708105)
巻号頁・発行日
vol.59, no.11, pp.423-429, 2019 (Released:2019-11-15)
参考文献数
17
被引用文献数
2 4

Patients with spontaneous cerebellar hemorrhage present with rapidly deteriorating neurological symptoms due to a hematoma-induced mass effect in the brainstem. We compared the standard surgical approach of a suboccipital craniectomy with neuroendoscopic surgery for treating spontaneous cerebellar hemorrhage. We performed a retrospective analysis of 41 patients indicated for surgery to treat spontaneous cerebellar hemorrhage. At our hospital, craniectomy was performed until 2010, and neuroendoscopic surgery was performed thereafter when a qualified surgeon was available. Duration of surgery and intraoperative blood loss were lower in the neuroendoscopic surgery group. The extent of hematoma removal and the percentage of patients requiring shunting were similar between groups. The mass effect was resolved in all patients in both groups, and no substantial re-bleeding was observed in either group. The outcomes at discharge were comparable between the two groups. Our surgeons used the supine lateral position, which involves fewer burdens to the patient than the prone position. Selection of the site of the burr hole is important to avoid the midline and to avoid the area exactly above the transverse and sigmoid sinus. Our results suggest that minimally invasive neuroendoscopic surgery is safe and superior to craniectomy due to shortened duration of surgery and decreased intraoperative bleeding.
著者
Mitsunori MATSUMAE Osamu SATO Akihiro HIRAYAMA Naokazu HAYASHI Ken TAKIZAWA Hideki ATSUMI Takatoshi SORIMACHI
出版者
The Japan Neurosurgical Society
雑誌
Neurologia medico-chirurgica (ISSN:04708105)
巻号頁・発行日
vol.56, no.7, pp.416-441, 2016 (Released:2016-07-15)
参考文献数
310
被引用文献数
29 56

Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016.
著者
Mitsunori MATSUMAE Osamu SATO Akihiro HIRAYAMA Naokazu HAYASHI Ken TAKIZAWA Hideki ATSUMI Takatoshi SORIMACHI
出版者
社団法人 日本脳神経外科学会
雑誌
Neurologia medico-chirurgica (ISSN:04708105)
巻号頁・発行日
pp.ra.2016-0020, (Released:2016-05-27)
参考文献数
310
被引用文献数
2 56

Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016.