著者
Takaaki Tomofuji Daisuke Ekuni Koichiro Irie Tetsuji Azuma Naofumi Tamaki Takayuki Maruyama Tatsuo Yamamoto Tatsuo Watanabe Manabu Morita
出版者
バイオメディカルリサーチプレス
雑誌
Biomedical Research (ISSN:03886107)
巻号頁・発行日
vol.32, no.5, pp.343-349, 2011 (Released:2011-10-28)
参考文献数
31
被引用文献数
4 43

Gingival response to periodontal inflammation generates excessive lipid peroxide and such a condition may augment systemic health through increased circulating lipid peroxide. The purpose of the present study was to investigate whether the generation of lipid peroxide in periodontal inflammation could induce tissue injury in the liver, heart, kidney and brain using a rat model. Twelve Wistar rats (8 week-old male) were divided into 2 groups: the periodontal inflammation group, receiving topical application of lipopolysaccharide and proteases to the gingival sulcus for 4 weeks, and the control group using instead pyrogen-free water. After blood samples were collected, specimens from the brain, heart, liver and kidney were resected to determine the concentration of 8-hydroxydeoxyguanosine (an indicator of oxidative DNA damage). Gingival and serum levels for hexanoyl-lysine were measured to evaluate lipid peroxide. Administration of lipopolysaccharide and proteases induced periodontal inflammation, with increasing gingival and serum levels of hexanoyl- lysine. The level of 8-hydroxydeoxyguanosine increased 2.27, 2.01, 1.49 and 1.40 times in mitochondrial DNA from the liver, heart, kidney and brain of rats with periodontal inflammation, respectively. The results reveal that excessive production of lipid peroxide following periodontal inflammation is involved in oxidative DNA damage of the brain, heart, liver and kidney.
著者
Rihito Takisawa Takayuki Maruyama Tetsuya Nakazaki Keiko Kataoka Hiroki Saito Sota Koeda Tsukasa Nunome Hiroyuki Fukuoka Akira Kitajima
出版者
一般社団法人 園芸学会
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.OKD-042, (Released:2017-03-03)
被引用文献数
20

Parthenocarpy is a trait where fruit set and growth are triggered without pollination and fertilization. In the tomato (Solanum lycopersicum L.), this trait is considered attractive as it reduces the cost and labor requirements for fruit setting. In this study, we investigated the inheritance of parthenocarpy in ‘MPK-1’—a parthenocarpic tomato cultivar derived from a cross between a variant from a self-fertilization posterity of ‘Severianin’, which exhibited strong parthenocarpy and a non-parthenocarpic cultivar. It was reported that ‘MPK-1’ contains a pat-2 gene because ‘Severianin’ which has a pat-2 gene is its only parthenocarpic ancestor. However, we found that parthenocarpy in ‘MPK-1’ is controlled by a novel parthenocarpic gene, not pat-2. This novel gene, which was designated as Pat-k, is semi-dominant and located on chromosome 1. We also showed that the size of the parthenocarpic fruit of ‘MPK-1’ is similar to that of the pollinated fruit at maturity. Thus, ‘MPK-1’ may be used as a new parthenocarpic resource for breeding.