著者
片山 富弘
出版者
中村学園大学
雑誌
中村学園大学・中村学園大学短期大学部研究紀要 (ISSN:13477331)
巻号頁・発行日
vol.37, pp.69-75, 2005-03-15

日本三大朝市の一つの呼子朝市のある佐賀県呼子町に新商業施設を設ける場合を事例にして,修正ハフモデルを活用して商圏規模を測定した。その商圏測定プロセスと結果を通じての小売マネジメントからの有効性の検汁を行った結果,取扱品目によっていくつかの商圏規模が測定され,商圏規模の数値の取扱いに経営判断が要求されることが明らかになった。
著者
松田 晴英
出版者
中村学園大学
雑誌
中村学園大学・中村学園大学短期大学部研究紀要 (ISSN:13477331)
巻号頁・発行日
vol.33, pp.221-224, 2001-03-15

Let n be an odd integer. A graph G is said to be m-factor-critical if G-H has a [1, n]-odd factor for each H⊂V(G) with |H|=m. In terms of neighborhood unions, we give a sufficient condition for a graph to be m-factor-critical with respect to [1, n]-odd factor. Let G be a k-connected graph. Let m be an integer with 0 &le; m &le; k and |G| ≡ m (mod 2), and let α be a real number with 1/(n+1) &le; α &le; 1. If |N_G(A)| > α(|G|-(n+1)k+nm-2)+k for every independent vertex set A of order [α(n(k-m)+2)], then G is m-factor-critical with respect to [1, n]-odd factor. We also discuss the sharpness of the result. x ∈ V(G), we denote by deg_G(x) the degree of x in G, and by N_G(x) the set of vertices adjacent to x in G. For a subset X ⊆ V(G), let N_G(X) = U_<x∈X>N_G(x). The number of odd components of odd in G is denoted by o(G). Let n be an odd integer. Then a spanning subgraph F of G is called a[1, n]-odd factor if deg_F(x) ∈{1, 3 ..., n} for all x ∈V(G). For a nonnegative integer m, a graph G is said to be m-factor-critical with respect to [1, n]-odd factor if G-H has a [1, n]-odd factor for each H ⊂ V(G) with |H| = m. Note that when n=1, [1, n]-odd factor nothing but 1-factor or perfect matching. Kano and Matsuda [3] introduce [1, n]-odd factor criticality, that is, it considers conditions for a proper subset of a graph to have a [1, n]-odd factor. One of results in the paper [3] is the following :