著者
五井 龍彦 田中 裕久 中島 健一 渡辺 浩二
出版者
一般社団法人 日本航空宇宙学会
雑誌
日本航空宇宙学会論文集 (ISSN:13446460)
巻号頁・発行日
vol.58, no.678, pp.203-209, 2010 (Released:2010-07-26)
参考文献数
6
被引用文献数
4 3

A half-toroidal traction drive CVT has a feature of small spin at traction pitch in whole speed ratio range of 1:4, which suits to transmit high rotational speed with minimum temperature increase of traction surface. Research activity on traction drive CVT has commenced in 1996 for applying it to an aircraft 24,000rpm constant-speed generator instead of a hydro-static transmission. This paper shows fundamental design of 90kW traction drive integrated drive generator, ``T-IDG", and stability analysis on a sensor-less electro-hydraulic speed control servo-mechanism by bond graphs. The performance test of T-IDG mounted on a test bench and an actual jet engine proved that the control system using sensor-less servomechanism can keep the generator speed within MIL-STD-704E allowable limit against steep changes of speed and load.
著者
松田 吉平 田中 謙一郎 今井 秀幸 五井 龍彦 佐藤 恭一 田中 裕久
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.84, no.861, pp.17-00472-17-00472, 2018 (Released:2018-05-25)
参考文献数
4
被引用文献数
2

The traction drive - integrated drive generator (T-IDG®) has been developed since 1999 to replace current hydrostatic transmission drive generators. The T-IDG® consists of a generator and a half-toroidal traction-drive continuously variable transmission (CVT), which maintains a constant output speed of 24,000 rpm. In terms of coping with recent trends of high-power electric drive aircraft (MEA) and the need for weight reduction, a high-speed traction-drive CVT is advantageous over current hydro-static drive transmissions. To control a speed ratio of the high-speed CVT accurately, it is essential to know the speed-changing response. In conventional study, the speed-changing response is approximately proportional to a rotational speed; however, in the high speed CVT, a minute deformation during the speed change affects its response. This paper describes the analysis and a developed theory of the speed-changing response of a toroidal CVT, with showing test results which verify the response of the high speed CVT, whose input speed is 20,000 rpm at maximum with a peripheral speed of traction contact of 70 m/s.