著者
図子 あまね 苅山 靖 図子 浩二
出版者
一般社団法人日本体力医学会
雑誌
体力科学 (ISSN:0039906X)
巻号頁・発行日
vol.66, no.1, pp.79-86, 2017-02-01 (Released:2017-01-21)
参考文献数
33
被引用文献数
2 3

We aimed to investigate the characteristics of lower-limb strength and power used for lower-limb mechanical variables in rebound jump (RJ) test by using a new system (Quick Motion Analysis System), which calculates mechanical variables in real time. Thirty-three male jumpers performed the RJ test. The performance (RJ index, contact time, and jump height) and joint kinetics (joint work and joint contribution) in RJ were calculated. IAAF Scoring Tables of Athletics were used to calculate jump event performance (IAAF score). IAAF score was positive correlated with RJ index, jump height, and joint work at the ankle and hip joints. Elite jumpers achieved higher RJ performance by larger ankle and hip joint work. As performance variables, jumping height and contact time were converted to T scores, and evaluation method was proposed to use the relative merits of these values to classify athletes into four types. The IAAF score showed no differences among the four types. These results indicate that there is no relation among jump events performance and characteristics of the four types. Moreover, focusing on stiffness, based on the contact time and jump height, jumpers with a longer contact time and higher jump height type showed lower stiffness (compliant spring characteristics), whereas those with the opposite features showed higher stiffness (stiffer spring characteristics). Therefore, for evaluating lower-limb strength and power characteristics, the use of performance and joint kinetics are effective, in addition to focusing on type characteristics based on the contact time and jump height in RJ.
著者
吉田 拓矢 松島 一司 林 陵平 図子 あまね 苅山 靖
出版者
一般社団法人 日本体育学会
雑誌
体育学研究 (ISSN:04846710)
巻号頁・発行日
pp.17129, (Released:2018-08-06)
参考文献数
37

The purpose of this study was to evaluate the multistep drop jump (DJ) test in elite jumpers according to changes in test performance, ground reaction force, and lower limb joint kinetics with changes in drop height. Male jumpers (n=10) performed a DJ from 4 drop heights (0.3, 0.6, 0.9, and 1.2 m). The DJ-index was calculated by dividing the jump height by the contact time. The rate of change of the DJ-index (a/b) was the slope/intercept of the regression line (Y = aX+ b) derived from 4 values of the DJ-index for each subject. Jump motions in the sagittal plane and ground reaction force data were recorded using a high-speed camera and force platform, respectively. The DJ-index was lower at 1.2 m than at other drop heights. The contact time increased along with the drop height. There was no significant difference in jump height between the drop heights. The amount of negative work by 3 lower extremity joints increased with increasing drop height. The jump events performance (IAAF Score) and DJ-index at each drop height only showed a significant correlation at 1.2 m. The correlation between IAAF score and a/b was significant between these variables. According to individual characteristics, increased drop heights were associated with different patterns of change in the DJ index. Therefore, subjects were grouped according to characteristics using a/b as an index. Sub.A, who had the highest jump-event performance in the study, had participated in international meetings, and had won a medal at the World Junior Championships. The DJ-index for this subject at 0.3 m was close to the mean value, but at 1.2 m was highest among all the subjects. In contrast, the DJ-index for Sub.C at 0.3 m was highest among the subjects. However, the DJ-index decreased greatly with an increase from 0.3 m to 1.2 m. Therefore, to evaluate the performance of jumpers, it is important to use a varied range of heights, including a higher drop height (approximately 1.2 m), focusing on the rate of change with increasing drop height.
著者
苅山 靖 林 陵平 吉田 拓矢 図子 あまね 図子 浩太佑 図子 浩二
出版者
一般社団法人日本体力医学会
雑誌
体力科学 (ISSN:0039906X)
巻号頁・発行日
vol.67, no.2, pp.187-197, 2018-04-01 (Released:2018-03-16)
参考文献数
44
被引用文献数
1

Movement control and muscle function for pelvic movement in the frontal plane (pelvic elevation) are important for various single-leg sports activities. We aimed to clarify mechanical characteristics of pelvic squat (P-Sq: single-leg squat exercise with emphasis on pelvic elevation, developed by our research group) compared with the double-leg squat (D-Sq) and single-leg squat (S-Sq). Twelve male track and field athletes performed D-Sq, S-Sq, and P-Sq exercises at various loads (90%, 75%, and 60% of 1-repetition maximum [1RM]), using maximum effort. Kinematic and kinetic data were calculated using data recorded with a motion capture system and force platforms. We observed the highest values with P-Sq, followed by S-Sq and D-Sq under all load conditions as follows: peak vertical ground reaction force and rate of force development (RFD), range of pelvic elevation, peak pelvic elevation velocity, peak powers associated with hip abduction torque and trunk lateral flexion torque. In P-Sq, RFD at 90% 1RM was smaller than under the other load conditions, whereas peak vertical ground reaction force at 90% 1RM was larger than under the other load conditions. There were no differences among load conditions with regard to hip abduction and trunk lateral flexion torques and powers. Therefore, characteristics of P-Sq compared to those of D-Sq and S-Sq are 1) larger and faster pelvic elevation, using related muscles (hip abductors and trunk lateral flexors) under all load conditions, 2) larger peak ground reaction force with pelvic elevation under large load conditions, and larger RFD in pelvic elevation under low load conditions.
著者
苅山 靖 林 陵平 吉田 拓矢 図子 あまね 図子 浩太佑 図子 浩二
出版者
一般社団法人日本体力医学会
雑誌
体力科学 (ISSN:0039906X)
巻号頁・発行日
vol.67, no.2, pp.187-197, 2018
被引用文献数
1

<p>Movement control and muscle function for pelvic movement in the frontal plane (pelvic elevation) are important for various single-leg sports activities. We aimed to clarify mechanical characteristics of pelvic squat (P-Sq: single-leg squat exercise with emphasis on pelvic elevation, developed by our research group) compared with the double-leg squat (D-Sq) and single-leg squat (S-Sq). Twelve male track and field athletes performed D-Sq, S-Sq, and P-Sq exercises at various loads (90%, 75%, and 60% of 1-repetition maximum [1RM]), using maximum effort. Kinematic and kinetic data were calculated using data recorded with a motion capture system and force platforms. We observed the highest values with P-Sq, followed by S-Sq and D-Sq under all load conditions as follows: peak vertical ground reaction force and rate of force development (RFD), range of pelvic elevation, peak pelvic elevation velocity, peak powers associated with hip abduction torque and trunk lateral flexion torque. In P-Sq, RFD at 90% 1RM was smaller than under the other load conditions, whereas peak vertical ground reaction force at 90% 1RM was larger than under the other load conditions. There were no differences among load conditions with regard to hip abduction and trunk lateral flexion torques and powers. Therefore, characteristics of P-Sq compared to those of D-Sq and S-Sq are 1) larger and faster pelvic elevation, using related muscles (hip abductors and trunk lateral flexors) under all load conditions, 2) larger peak ground reaction force with pelvic elevation under large load conditions, and larger RFD in pelvic elevation under low load conditions.</p>