著者
山崎 正勝 雀部 晶 日野川 静枝 管 耕作 道下 敏則 藤村 淳
出版者
東京工業大学
雑誌
総合研究(A)
巻号頁・発行日
1984

1.史料収集:米国立公文書館等より市販されている原爆開発関係資料については、基本的に入手を終えた。主なものは、MED、ハリソン-バンディ、トップ・シークレット各ファイル、AEC関係資料、スチムリン日記などである。またブッシュ・コナント・ファイルの一部は、ゼロックス複写を得た。シカゴ治金研究所、ロスアラモス研究所関係の技術報告書の写しについても、重要資料については入手した。企業関係のものは、入手上の制約のため、デュポン社関係の一部を入手したに止まった。米国以外のものは、上記資料に含まれているものの他に、英国、日本における技術資料の一部を入手した。2.史料分析:爆弾構想の起源とその成立条件は、U、Pu爆弾についてほぼ全面的に明らかにされた。また、これと政策決定との相関についても明確となった。研究開発方式の選択・決定における軍の介入と科学者側との齟齬の問題については、その一部が明らかにされた。研究開発の諸側面については、軍事的要請が技術的変型を生んだ点がとくに注目され、平時では現実しない技術体系が、ウラン電磁分離法、プルトニウム分離における沈澱法、大型ウラン爆弾、大型インプロージョン装置などの採用と開発として、実現化したことが示された。投下目標については、政策決定者レベルでは、43年末まではドイツと日本が並列的に設定され、44年に、ドイツでの原爆開発が未完であることの察知と前後して、対日投下に一元化されたことが明らかにされた。また、投下の事前予測は相当正確になされたものの、その目的が実験と実戦使用における味方人員の安全確保におかれたため、不完全に終ったことが示された。科学者の動員、対応については、科学者がいくつかの階層構造を持つ点から分析が行われた。
著者
山崎 正勝 菅 耕作 日野川 静枝
出版者
東京工業大学
雑誌
一般研究(C)
巻号頁・発行日
1988

(資料収集)今回、新たに入手した文書としては、米国ではロスアラモス研究所関係、英国ではO.フリッシュ、R.パイエルスの第二メモ、仏国ではジョリオ・キュリ-関係のものが代表的なものである。このうち後二者は、本研究でわが国では初めて入手されたもので、原爆問題をそれぞれの国の科学者たちがどのように考えていたかを知るうえで重要な文書である。また、日本の資料にもついても、GHQ関連の文書を入手した。(資料分析)(1)上記資料の入手により、シラ-ドら米国科学者と、仏、英の科学者の原爆に体する対応の共通性と相違点が明らかにされた。(2)シカゴ大学治金研究所の成立過程については、従来不明な点が多かったが、原資料の分析を通じて幾つかの重要な側面、例えば、同研究所が軍事研究所であったにもかかわらず、大学附置となったことによって、それまでの大学内の自治的な研究慣行が維持された、などが明らかにされた。(3)ロスアラモス研究所での原爆の研究開発過程についても、技術的開発過程を追うことによって、ウラン爆弾とプルトニウム爆弾の開発の競合の基本的過程が明らかになった。その中でとくに重要な点は、初期の砲撃型プルトニウム爆弾、スインマンの開発の挫折とその放棄で(44年夏)、これによって対独使用が技術的に不可能となり、対日投下が決定的となったことが示された。
著者
日野川 静枝
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.25, no.160, pp.235-244, 1986 (Released:2021-09-22)

A plan of plutonium bomb was existed separately from a plan of uranium bomb at the beginning of the development of atomic bombs. The following is the transition of significance of the plan of plutonium bomb. In December 1940, the plan of plutonium bomb was posed in England and U.S.A. independently. In December 1941, the plan of plutonium bomb was not stated clearly, but it was interested in whether the fission chain reaction using uranium is feasible or not. Because, such reactions will produce the "94" (plutonium) which is material of plutonium bomb. In June 1942, the plan of plutonium bomb was stated clearly, and also it caused Army and Industries to be concerned in the development of atomic bomb in earnest. In December 1942, the chain reaction was proved. So the plan of plutonium bomb was changed from which to be for ending the war to which to be concerned with the atomic power policy of the post war.
著者
木本 忠昭 雀部 晶 山崎 正勝 日野川 静枝 慈道 裕治 加藤 邦興
出版者
東京工業大学
雑誌
総合研究(A)
巻号頁・発行日
1993

戦後の日本科学技術政策は、科学技術庁や科学技術会議などの機関があるものの一貫した整合性ある政策が形成され、もしくは施行されてきたとはいえない。通産省や文部省、あるいは農水省などの各省庁から出されてくる諸政策の集合体が、様々な科学・技術の発展過程に関与してきたにすぎない。当然ながら、それらの省庁間の諸政策には摩擦があり、ある意味での「力」の論理が現実を左右してきた。こうした政策のうち技術にもっとも密接に関与してきたのは通産省であったことは言うまでもない。通産省の技術関連政策は、技術導入や日本企業の国際的競争力の強化において極めて強力で企業を強く保護するものであったことは大方の指摘してきたことではある。集積回路やコンピュータを始め、電子工業に関する技術発展の重要な局面にはこの保護政策が強く作用した。この通産政策はしかし、国際市場における日本製品の競争力強化という点においては有効ではあったものの、技術を原理的に転換したり、あるいは人間社会の基盤的技術としての方向性を独自に作り出す方向には、有効に働いてはこなかった。この政策は、競争力強化という面においてさへ、コンピュータに新技術開発においても有効に作用しないばかりか、ハイビジョン・テレビのように根本的発展を無視した方向に機能し、むしろ問題になってきている。また、先の「もんじゅ」高速増殖炉事故の際問題となった「町工場」(下請け)と先端企業(本社)とを結ぶ社会的技術分業体制の転換・崩壊に見られるような生産体系の社会的構造の変化に対応する形で問題を把握することすら行い得ない現状を生んでいる。公害・環境問題に見られるように科学・技術の発展が社会的問題を惹起するように、しかも社会的弱者の土台の上に展開する構造すら見られる。人間社会が科学技術の発展に寄せる期待は、そのようなものではなかった。科学技術政策として重要な視点は、技術論的技術史的論理を踏まえた政策立案であるべきである。
著者
日野川 静枝
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.51, no.264, pp.199-209, 2012 (Released:2021-07-20)

This paper examines the way the University of California's Radiation Laboratory, which was at the center of cyclotron development in the 1930s, became a center of military research for the development of new weapons. Focusing on Alfred Lee Loomis (1887-1975), the author elucidates the nature of his relationship with the Radiation Laboratory from late 1939 through the autumn of 1940. Three points are clarified: 1) Loomis' role in getting a 184-inch cyclotron planned: 2) the significance of his presence as Lawrence's "partner" in getting the actual construction started; and 3) Loomis' role in getting the Radiation Laboratory's microwave research incorporated into the National Defense Research Committee's military research.
著者
日野川 静枝
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.48, no.250, pp.109-119, 2009 (Released:2021-08-04)

The cyclotron was invented and developed in the 1930s as an experimental device for nuclear physics. The Rockefeller Foundation was deeply involved in the construction and operation of cyclotrons, not only in the United States, where this machine was invented, but also in many other countries. The Foundation's grants, however, were designated not for nuclear physics research but for so-called Experimental Biology, a research program launched by Warren Weaver, then the Rockefeller Foundation's Director for the Natural Sciences. One exception to this policy was the funding granted to Niels Bohr in Copenhagen. In order to justify their new experimental biology program, Weaver and his associates strongly desired the participation of Bohr, a renowned physicist. To accomplish this purpose, they drew Georg Charles von Hevesy, who desired to escape Nazi Germany, to Bohr's laboratory to participate in the experimental biology project in Copenhagen. Their cyclotron was used to produce radioactive isotopes, which were essential to Hevesy's research using isotope tracer techniques. Hence the Foundation made this exception, twice awarding grants to Bohr, who wanted to do nuclear research, for the construction and operation of a cyclotron.
著者
日野川 静枝
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.46, no.244, pp.241-252, 2007 (Released:2021-08-09)

Harvard University's first cyclotron, constructed in the 1930s, was dismantled and moved from its original location in Boston to Los Alamos, New Mexico, which was the center for atomic bomb assembly. This cyclotron has never been analyzed in depth. This paper elucidates and analyzes the process through which Harvard's cyclotron was developed. It aims to clarify the distinctive features of cyclotron development at Harvard. Specifically, it describes the role of Harvard University President James B. Conant in the decision to construct a cyclotron; the role of private enterprise in achieving cyclotron technology; and the difficulties encountered in securing funds. The following conclusions are drawn: 1) To promote nuclear physics research, in which the university was lagging behind, Conant took direct initiative for building a cyclotron. Without his initiative, arousing opinion within the university and obtaining support from military and business sources would probably have been impossible; 2) The free loan of a radio transmitter from the Department of the. Navy was a major factor in the decision to construct a cyclotron. At the same time, it created new difficulties in actually achieving cyclotron technology. These difficulties were overcome through cyclotron technology accumulated by enterprises and research institutions in the United States and, more directly, by the spread of cyclotron technology through exchanges among cyclotron engineers; 3) University funds financed the cyclotron's construction, but support for its operation and maintenance were requested from outside sources.
著者
日野川 静枝
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.45, no.238, pp.81-91, 2006 (Released:2021-08-11)

The World War II broke out in Europe in 1939, and the United States set up the National Defense Research Committee on June in 1940. On April 3,1940, the Meeting of Trustees of the Rockefeller Foundation decided on a grant of $1,150,000 to support the construction of a new 184-inch cyclotron at the University of California. This paper elucidates the process leading up to that decision. The decision-making process can be divided into three stages : The first, beginning in October 1939, saw initial enthusiasm for the giant cyclotron project; the second, lasting until February 1940, involved changes in the Foundation's internal circumstances and limitations on funding; the third, which began in early February 1940, saw specific steps toward the materialization of Foundation support for the project. Doubtlessly, Lawrence's supporters tangibly and intangibly influenced the Rockefeller Foundation's decision to support the construction of the giant cyclotron. The decision-making process, however, seems to shed light on the Foundation's grant-making plans or grant-making policy. That is, the Foundation was deeply involved in drawing up the plans from the start, and provided grants for carefully-selected, large-scale, and long-range projects in the fields it was interested in. The giant cyclotron project, for which single-source support was an important issue, seems to be one such case.
著者
日野川 静枝
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.42, no.226, pp.65-75, 2003 (Released:2021-08-13)

This paper clarifies the process through which two cyclotrons were built in England in the 1930s. They were developed by John D. Cockcroft at Cambridge University's Cavendish Laboratory and by Bernard B. Kinsey working under James Chadwick at the University of Liverpool, both in close cooperation with the Metropolitan-Vickers Electrical Company, Ltd. This firm was interested in commercial production of radioactive isotopes and, through development of the cyclotron at the Cavendish, aimed to gain expertise in cyclotron engineering. Development policy at the two institutions differed, with Cockcroft imitating American cyclotrons and Kinsey creating a cyclotron using new technology. While both projects were affected by the overall demands of military production, the two laboratories' respective development policies combined with their differing relations with M-V to create about one year's difference in the completion dates of the two cyclotrons.
著者
日野川 静枝
出版者
日本科学史学会
雑誌
科学史研究. 第II期 (ISSN:00227692)
巻号頁・発行日
vol.45, no.238, pp.81-91, 2006-06-01
参考文献数
35
被引用文献数
2

The World War II broke out in Europe in 1939, and the United States set up the National Defense Research Committee on June in 1940. On April 3,1940, the Meeting of Trustees of the Rockefeller Foundation decided on a grant of $1,150,000 to support the construction of a new 184-inch cyclotron at the University of California. This paper elucidates the process leading up to that decision. The decision-making process can be divided into three stages : The first, beginning in October 1939, saw initial enthusiasm for the giant cyclotron project; the second, lasting until February 1940, involved changes in the Foundation's internal circumstances and limitations on funding; the third, which began in early February 1940, saw specific steps toward the materialization of Foundation support for the project. Doubtlessly, Lawrence's supporters tangibly and intangibly influenced the Rockefeller Foundation's decision to support the construction of the giant cyclotron. The decision-making process, however, seems to shed light on the Foundation's grant-making plans or grant-making policy. That is, the Foundation was deeply involved in drawing up the plans from the start, and provided grants for carefully-selected, large-scale, and long-range projects in the fields it was interested in. The giant cyclotron project, for which single-source support was an important issue, seems to be one such case.
著者
日野川 静枝
出版者
拓殖大学人文科学研究所
雑誌
拓殖大学論集. 人文・自然・人間科学研究 = The journal of humanities and sciences (ISSN:13446622)
巻号頁・発行日
vol.40, pp.1-24, 2018-11-10

This paper will examine how science became militarized, focusing on a few years from the late 1930s, when the plan to construct the 184-inch cyclotron emerged, through the early 1940s, when the University of California set up a system to mobilize for war.Part I will describe the close relationship that grew up between Ernest O. Lawrence(1901_1958), inventor of the cyclotron and head of the Berkeley Radiation Laboratory(the Rad Lab), and his supporter Alfred Lee Loomis(1887_1975), who, as an investment banker and amateur scientist, brought Lawrence in to contact with industrialists in the course of developing the 184-inch cyclotron. Part II discusses the way Loomis brought Lawrence into the web of military-industrial ties. The urgent need to develop a high-power, high-frequency oscillation tube, which was a component technology needed for both radar and the cyclotron, provided common ground for getting Lawrence involved in defense research. Part III will focus on the question of overhead to explore the University of California's handling of defense research contracts at a time when the government was creating a system to mobilize science and engineering for the war. This process led to the development of big science, which has the following three characteristics: the development of equipment that utilizes advanced technology; the need for enormous research funds; and the organization of researchers and thorough division of labor in the laboratory. Each of these characteristics engenders another aspect: The first leads to close cooperation between the research laboratory and industry in developing the technology; the second invites investment by huge foundations and contracts with the government and the military; and the third makes it impossible for researchers to continue their research except as part of a project and team, thereby robbing them of their independence. Some of the changes in the socioeconomic foundations of science and technology that were promoted by a special kind of coercion during the war became built into the postwar social structure in the form of the military-industrial-academic complex, making it impossible to think of postwar policy without them.