著者
興梠 紗和 木村 昭悟 藤代 裕之 西川 仁
出版者
The Institute of Electronics, Information and Communication Engineers
雑誌
電子情報通信学会論文誌 D (ISSN:18804535)
巻号頁・発行日
vol.J99-D, no.4, pp.403-414, 2016-04-01

SNSの隆盛によりニュースを取り巻く環境は大きく変化している.新聞やテレビから一方的に配信される記事を受け取るのではなく,膨大な情報で溢れるSNS上から関心のある記事を選択して購読する新たなニュースの読まれ方が生まれている.この変化により,ニュースメディアはSNS上で記事を読者に対して効果的にアピールする必要に迫られている.その一方で,刺激的な言葉を用いてむやみに拡散させるのではなく,記事を正確に説明し,その内容に興味をもつ読者に記事を届ける必要がある.本研究では,ニュース配信者がニュース消費者に適切なニュース記事を提供するための一手段として,ニュース記事を的確に説明する説明文が,SNS上でより多くの読者に読まれるために備えるべき性質を特定することを目指す.この目標に向け,本論文ではまず記者と編集者を対象としたヒアリング調査と,ニュースサイトがSNSに投稿している説明文の調査を行った.これらの調査を分析することで明らかになった,説明文がもつべき性質を利用することで,与えられたニュース記事をSNS上で紹介する説明文を幾つかの候補の中から自動的に選択する手法を提案する.
著者
木村 昭悟 Zoubin Ghahramani 竹内 孝 岩田 具治 上田 修功
出版者
人工知能学会
雑誌
2018年度人工知能学会全国大会(第32回)
巻号頁・発行日
2018-04-12

本論文では,少量の訓練データのみからニューラルネットワークを学習する新しい手法を提案する.提案手法では,一般的な少数ショット学習の問題設定とは異なり,所与の少数訓練データ以外のデータ資源は仮定しない.提案手法では,少数の訓練データで学習した非NNモデルを参照モデルとして用いる知識蒸留を行うと共に,少数の訓練データから生成した大量の疑似訓練データを導入し,この疑似訓練データをモデル学習の過程で更新する.
著者
竹内 孝 石黒 勝彦 木村 昭悟 澤田 宏
雑誌
情報処理学会論文誌数理モデル化と応用(TOM) (ISSN:18827780)
巻号頁・発行日
vol.7, no.1, pp.71-83, 2014-03-28

行列分解には,観測行列に含まれる零要素の割合が大きくなるにつれて低ランク近似の汎化性能が低下する問題がある.本稿では,この問題を解決するための統計的機械学習アプローチとして複合非負値行列因子分解(Non-negative Multiple Matrix Factorization: NM2F)を提案する.NM2F は,観測行列と2つの補助行列の間に共通の潜在構造を仮定し,これらの行列を同時に分解する.本稿では,NM2F を非負値行列因子分解(Non-negative Matrix Factorization: NMF)の一般化として定式化し,補助関数法により一般化KLダイバージェンスを用いた場合のパラメータ推定法を示す.さらにNM2F は,ブロック未定義領域ありNMFとポアソン分布を用いた確率的生成モデルと等価であることを示す.人工データと実データを用いた実験から,NM2F と既存手法の汎化性能を比較し,NM2F の定量的な優位性を示す.また,実データを用いた実験では,NM2F が複数の行列から多角的な基底を抽出する定性的な利点を示す.
著者
竹内 孝 石黒 勝彦 木村 昭悟 澤田 宏
出版者
一般社団法人電子情報通信学会
雑誌
電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 = IEICE technical report. IBISML, Information-based induction sciences and machine learning (ISSN:09135685)
巻号頁・発行日
vol.112, no.279, pp.67-74, 2012-10-31
参考文献数
25

本稿では,非負値制約下における複数行列の同時分解法(Stacked Non-negative Matrix Factorization:sNMF)を提案する.sNMFは,行列同士の関係を利用して複数の非負値行列を同時に分解する手法であり,NMFを一般化したモデルとして定式化される.sNMFは,未定義領域有りNMFの特殊な例とも解釈できる.本稿では,データマイニングの分野で関心を集めている,ソーシャルメディアからの話題トピックと話題に関するユーザクラスタの同時抽出問題にsNMFを適用した.NMFと比較して,定量的にも定性的にもsNMFの利用によって解析精度の向上が確認された.
著者
竹内 孝 石黒 勝彦 木村 昭悟 澤田 宏
雑誌
情報処理学会論文誌数理モデル化と応用(TOM) (ISSN:18827780)
巻号頁・発行日
vol.7, no.1, pp.71-83, 2014-03-28

行列分解には,観測行列に含まれる零要素の割合が大きくなるにつれて低ランク近似の汎化性能が低下する問題がある.本稿では,この問題を解決するための統計的機械学習アプローチとして複合非負値行列因子分解(Non-negative Multiple Matrix Factorization: NM2F)を提案する.NM2F は,観測行列と2つの補助行列の間に共通の潜在構造を仮定し,これらの行列を同時に分解する.本稿では,NM2F を非負値行列因子分解(Non-negative Matrix Factorization: NMF)の一般化として定式化し,補助関数法により一般化KLダイバージェンスを用いた場合のパラメータ推定法を示す.さらにNM2F は,ブロック未定義領域ありNMFとポアソン分布を用いた確率的生成モデルと等価であることを示す.人工データと実データを用いた実験から,NM2F と既存手法の汎化性能を比較し,NM2F の定量的な優位性を示す.また,実データを用いた実験では,NM2F が複数の行列から多角的な基底を抽出する定性的な利点を示す.Analyzing highly sparse data often results in poor generalizing performances of matrix factorization. To compensate data sparseness, in this paper, we introduce a novel machine learning technique called Non-negative Multiple Matrix Factorization (NM2F). NM2F factorizes multiple matrices simultaneously under a non-negative constraint. We formulate NM2F as a generalization of Non-negative Matrix Factorization (NMF) with the generalized Kullback-Leibler divergence. We derive multiplicative update rules for parameter estimation. We evaluate NM2F and other existing techniques in both the quantitative and qualitative ways. NM2F shows better performance than other techniques on both synthetic and real-world data sets.
著者
中野 允裕 石黒 勝彦 木村 昭悟 山田 武士 上田 修功
出版者
一般社団法人電子情報通信学会
雑誌
電子情報通信学会技術研究報告 = IEICE technical report : 信学技報 (ISSN:09135685)
巻号頁・発行日
vol.113, no.286, pp.197-204, 2013-11-12

本稿では,関係データ解析への応用を目的として,無限サイズを持つ行列の長方形分割を行う確率過程について議論する.関係データ解析法の一つとして、与えられたデータを行列として表現し、その行列を少数の長方形クラスタに分割する手法が広く利用されている。長方形分割を表す確率的生成モデルとして従来Chinese restaurant processの積やMondrian processなどが用いられてきたが,これらは限られたクラスの長方形分割しか表現することが出来なかった.より一般に任意の長方形分割を生成しうる確率モデルとしてGilbert tessellationが知られているが,これは統計的な振る舞いの解析が困難であることが知られている.そこで本稿では,有限確率モデルの無限拡張によって長方形分割のための確率過程を構成する方法を提案する.はじめに,確率過程構成の常套手段であるKomogorovの拡張定理を用いた方法を示し,その問題点を明らかにした後,より洗練された構成法として有限のベイズ階層モデルに関する射影系をOrbanzの拡張定理によって無限拡張する方法を提案する.
著者
柏野 邦夫 木村 昭悟 黒住 隆行
出版者
一般社団法人電子情報通信学会
雑誌
電子情報通信学会技術研究報告. DE, データ工学 (ISSN:09135685)
巻号頁・発行日
vol.105, no.116, pp.13-17, 2005-06-09

長時間にわたって蓄積された映像信号や音響信号の特徴時系列において, 既知の映像信号や音響信号の出現箇所を高速に探索する手法を提案する.このような手法として, これまでに, 時系列アクティブ探索法が提案されている.時系列アクティブ探索法では, 類似度のもつ局所的な制約に基づいて枝刈りを行っていた.本稿で提案する手法は, 類似度の局所的な性質と大域的な性質の双方を枝刈りに利用することで高速化を図る.また, 類似度(距離)の定義にかかわらず全探索と同一の探索結果(つまり時系列アクティブ探索法と同一の探索結果)が得られるという特徴がある.映像探索を題材として実験を行った結果, 時系列アクティブ探索法に比べ, 照合計算回数が約28%削減されるとともに, 探索の所要時間も削減された.
著者
竹内 孝 石黒 勝彦 木村 昭悟 澤田 宏
出版者
一般社団法人電子情報通信学会
雑誌
電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 = IEICE technical report. IBISML, Information-based induction sciences and machine learning (ISSN:09135685)
巻号頁・発行日
vol.112, no.279, pp.67-74, 2012-10-31
参考文献数
25

本稿では,非負値制約下における複数行列の同時分解法(Stacked Non-negative Matrix Factorization:sNMF)を提案する.sNMFは,行列同士の関係を利用して複数の非負値行列を同時に分解する手法であり,NMFを一般化したモデルとして定式化される.sNMFは,未定義領域有りNMFの特殊な例とも解釈できる.本稿では,データマイニングの分野で関心を集めている,ソーシャルメディアからの話題トピックと話題に関するユーザクラスタの同時抽出問題にsNMFを適用した.NMFと比較して,定量的にも定性的にもsNMFの利用によって解析精度の向上が確認された.