著者
長尾 知生子 鎌田 真由美 中津井 雅彦 深川 明子 片山 俊明 川島 秀一 水口 賢司 安倍 理加
出版者
一般社団法人 日本医薬品情報学会
雑誌
医薬品情報学 (ISSN:13451464)
巻号頁・発行日
vol.24, no.4, pp.187-195, 2023-02-28 (Released:2023-04-07)
参考文献数
8

Objective: Pharmaceutical documents such as the common technical document, package inserts (PIs), and interview forms (IFs) are available at the website of the Pharmaceuticals and Medical Devices Agency. However, because these documents were created with an emphasis on human readability in paper form, it is difficult to use the information included and interoperate these documents with computers. Using IFs, we will investigate how to structure pharmaceutical documents in the AI era to achieve both human and machine readability.Design/Methods: The IFs of arbitrary selected ten drugs were structured into Resource Description Framework (RDF) according to the Drug Interview Form Description Guidelines 2018 (updated version in 2019). The data were manually extracted from the IFs and entered into a spreadsheet before being converted to RDF by a written script. The PIs were converted to RDF in addition to the IFs. To examine the linkage with external databases, IDs in ChEMBL, which is a manually curated database of bioactive molecules with drug-like properties, were embedded in the RDF.Results: We demonstrated that the conversion of IFs and PIs into RDF makes it possible to easily retrieve the corresponding part of the PIs cited in the IFs. Furthermore, we quickly obtained the relevant data from ChEMBL, demonstrating the feasibility of linking IFs with an external database. Our attempt to RDFization of IFs is expected to encourage the development of web applications for healthcare professionals and the development of datasets for AI development.Conclusion: We could easily interoperate IFs with other pharmaceutical documents and an external database by converting IFs into RDF following the description guidelines. However, problems such as how to deal with items that were not described in the description guidelines were indicated. We hope that discussions will grow based on this effort and that related industries will move toward accomplishing effective use of these documents.
著者
樋口 千洋 櫛田 達矢 畠中 秀樹 長尾 知生子 古崎 晃司 荒木 通啓 水口 賢司
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会第二種研究会資料 (ISSN:24365556)
巻号頁・発行日
vol.2022, no.SWO-058, pp.01, 2022-11-22 (Released:2022-12-03)

医薬基盤・健康・栄養研究所他研究機関での食品統計調査の支援を意図し、国民の検討栄養調査の食品群からOWLで食品オントロジーFGNHNSを構築しBioPortalで公開した。さらなる拡張としてWikidata情報の追加、FoodOnとの連携、日本標準食品成分表との統合、農作物語彙体系との連携、食物アレルギー情報との連携をすすめている。本研究会でその状況を報告する。
著者
夏目 やよい 水口 賢司
出版者
公益社団法人 日本薬理学会
雑誌
日本薬理学雑誌 (ISSN:00155691)
巻号頁・発行日
vol.149, no.2, pp.91-95, 2017 (Released:2017-02-01)
参考文献数
11
被引用文献数
1 1

創薬研究における時間,労力,費用といった様々なコストを下げ,革新的な創薬シーズを効率よく探索する試みの一つとして,コンピュータ解析(①データベース,②統計的モデリング,③数理モデリング)が積極的に利用されつつある.年々増加の一途を辿るデータベースを有効に利用するために,データベースの統合や,格納されたデータの解析を支援するプラットフォームの構築といった試みが需要を増している.また,収集された大量のデータから生物学的に意味のある情報・知識を引き出す技術が必要となることから,機械学習の手法の重要性は高い.一方,利用できるデータ量が不十分である場合などにおいても,理論計算によってシミュレーションをおこなうことにより観測している現象の本質を推定するアプローチも有効であり,これらの手法の特徴を理解した上で目的に応じたコンピュータ解析をおこなうことが肝要である.