著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.56, no.2, pp.367-390, 1981-09-30

地震断層モデルを波源とする津波数値実験が,東海道沖においても有用であることは,1944年東南海津波の例によって認められた.ここでは数値実験によって,1854年安政東海津波,1707年宝永津波,1605年慶長津波,1498年明応津波の波源断層モデルのパラメータを求めた.いずれも東海道に問題を限って議論される.この中,安政,宝永津波については,かなり信頼度の高いモデルが確定された.しかし慶長,明応津波については,史料の乏しいことなどもあって,信頼度が低いことは否めない.これらの津波の特徴を比較すると,地域によっては明応津波が最も高く,災害予測の面から見落すことのできない津波であると考えられる.また局地モデルによる清水港の陸上遡上計算の結果,防波堤,埋立地などの港湾工事が,津波の高さを軽減するのにかなり効果を持っていることがわかった.また津波危険度の局地性についても,計算上の結果が得られた.
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大學地震研究所彙報 = Bulletin of the Earthquake Research Institute, University of Tokyo (ISSN:00408972)
巻号頁・発行日
vol.56, no.2, pp.367-390, 1981-09-30

地震断層モデルを波源とする津波数値実験が,東海道沖においても有用であることは,1944年東南海津波の例によって認められた.ここでは数値実験によって,1854年安政東海津波,1707年宝永津波,1605年慶長津波,1498年明応津波の波源断層モデルのパラメータを求めた.いずれも東海道に問題を限って議論される.この中,安政,宝永津波については,かなり信頼度の高いモデルが確定された.しかし慶長,明応津波については,史料の乏しいことなどもあって,信頼度が低いことは否めない.これらの津波の特徴を比較すると,地域によっては明応津波が最も高く,災害予測の面から見落すことのできない津波であると考えられる.また局地モデルによる清水港の陸上遡上計算の結果,防波堤,埋立地などの港湾工事が,津波の高さを軽減するのにかなり効果を持っていることがわかった.また津波危険度の局地性についても,計算上の結果が得られた.
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大學地震研究所彙報 = Bulletin of the Earthquake Research Institute, University of Tokyo (ISSN:00408972)
巻号頁・発行日
vol.56, no.4, pp.713-730, 1982-03-31

南海道沖におこる巨大地震による津波の波源断層モデルを数値実験によって検討した.1946年南海地震を東西二つの断層によってあらわす.今回求められた断層モデルの特徴は,西側断層の西端が,足摺岬の東側約30kmにあること,東側の断層面の傾斜角が10°と低角であることである.また西側断層による海底変動継続時間を断定することはむずかしいが,3~10分程度と,普通の地震より長い方が,計算波形と実際記録の一致がよい.1854年安政南海地震津波の波源断層モデルは,南海地震の断層とくらべて,東側断層が北側に位置し,西側断層が30km長く求められた.また,ずれの量は約15%大きい.このモデルで大阪の津波の高さは2.4mとなるが,従来の推定値よりやや低い.しかし海岸においてこの程度の高さがあるならば,堀に津波が侵入する際,多くの船を上流に押し込み,地震をおそれて船上に避難していた人多数を犠牲にする可能性は十分あると考えられる.1707年宝永津波の場合は,足摺岬付近の津波の高さが,安政津波の約1.5倍もあり,また室戸岬,高知の地盤変動量が安政地震の際の約2倍といわれている.このため安政津波と相似形の波源断層モデルではよく近似できない.ここでは西側断層を更に二つに分割して三つの断層面をもうモデルによってこれを説明した.
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.56, no.4, pp.713-730, 1982-03-31

南海道沖におこる巨大地震による津波の波源断層モデルを数値実験によって検討した.1946年南海地震を東西二つの断層によってあらわす.今回求められた断層モデルの特徴は,西側断層の西端が,足摺岬の東側約30kmにあること,東側の断層面の傾斜角が10°と低角であることである.また西側断層による海底変動継続時間を断定することはむずかしいが,3~10分程度と,普通の地震より長い方が,計算波形と実際記録の一致がよい.1854年安政南海地震津波の波源断層モデルは,南海地震の断層とくらべて,東側断層が北側に位置し,西側断層が30km長く求められた.また,ずれの量は約15%大きい.このモデルで大阪の津波の高さは2.4mとなるが,従来の推定値よりやや低い.しかし海岸においてこの程度の高さがあるならば,堀に津波が侵入する際,多くの船を上流に押し込み,地震をおそれて船上に避難していた人多数を犠牲にする可能性は十分あると考えられる.1707年宝永津波の場合は,足摺岬付近の津波の高さが,安政津波の約1.5倍もあり,また室戸岬,高知の地盤変動量が安政地震の際の約2倍といわれている.このため安政津波と相似形の波源断層モデルではよく近似できない.ここでは西側断層を更に二つに分割して三つの断層面をもうモデルによってこれを説明した.
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.56, no.4, pp.p713-730, 1981
被引用文献数
8

南海道沖におこる巨大地震による津波の波源断層モデルを数値実験によって検討した.1946年南海地震を東西二つの断層によってあらわす.今回求められた断層モデルの特徴は,西側断層の西端が,足摺岬の東側約30kmにあること,東側の断層面の傾斜角が10°と低角であることである.また西側断層による海底変動継続時間を断定することはむずかしいが,3~10分程度と,普通の地震より長い方が,計算波形と実際記録の一致がよい.1854年安政南海地震津波の波源断層モデルは,南海地震の断層とくらべて,東側断層が北側に位置し,西側断層が30km長く求められた.また,ずれの量は約15%大きい.このモデルで大阪の津波の高さは2.4mとなるが,従来の推定値よりやや低い.しかし海岸においてこの程度の高さがあるならば,堀に津波が侵入する際,多くの船を上流に押し込み,地震をおそれて船上に避難していた人多数を犠牲にする可能性は十分あると考えられる.1707年宝永津波の場合は,足摺岬付近の津波の高さが,安政津波の約1.5倍もあり,また室戸岬,高知の地盤変動量が安政地震の際の約2倍といわれている.このため安政津波と相似形の波源断層モデルではよく近似できない.ここでは西側断層を更に二つに分割して三つの断層面をもうモデルによってこれを説明した.Source models of past tsunamis generated off the Pacific coast in the Nankaido district are examined by the trial and error method of numerical experiments on the basis of seismic fault models. The fault model for the 1946 Nankai earthquake consists of the eastern and the western fault planes. The peculiarity of this model is that the western margin of the fault is located 30 km eastward of Ashizuri-Misaki and the dip angle of the eastern fault plane is as low as 10 degrees. It may be difficult to define uniquely the duration time of the bottom deformation from the results of present numerical experiments. The prevailing speculation, though, seems to be that the duration time of the western part is 3 to 10 minutes, which is slower than that of the eastern part. The reliability factor, k, of the model, a logarithmic standard deviation of the ratios of observed and computed values for five reference stations, is 1.12. The fault model for the 1854 Ansei-Nankai tsunami is 30 km longer in the western fault and 15% larger in the slip displacement than that for the 1946 tsunami. The computed tsunami height at Osaka is 2.4 meters, which is smaller than the published estimated value, 2.5~3 meters. However, since Osaka is situated on the delta of the Yodo river and has many small canals, a tsunami 2.4 meters high at shore may invade canals as waves like bores and do tremendous damages to many boats and bridges, just as described in old documents. In the 1707 Hoei-Nankai tsunami, the tsunami heights at the southwestern region of Shikoku were about 1.5 times higher and the uplift at Muroto-saki about 2 times larger than those of the 1854 tsunami. Therefore, the fault model similar to the 1854 earthquake cannot explain the above characteristics. A model having three separate faults is proposed for this tsunami.
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.52, no.1, pp.71-101, 1977-11-30
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.56, no.2, pp.p367-390, 1981
被引用文献数
6

地震断層モデルを波源とする津波数値実験が,東海道沖においても有用であることは,1944年東南海津波の例によって認められた.ここでは数値実験によって,1854年安政東海津波,1707年宝永津波,1605年慶長津波,1498年明応津波の波源断層モデルのパラメータを求めた.いずれも東海道に問題を限って議論される.この中,安政,宝永津波については,かなり信頼度の高いモデルが確定された.しかし慶長,明応津波については,史料の乏しいことなどもあって,信頼度が低いことは否めない.これらの津波の特徴を比較すると,地域によっては明応津波が最も高く,災害予測の面から見落すことのできない津波であると考えられる.また局地モデルによる清水港の陸上遡上計算の結果,防波堤,埋立地などの港湾工事が,津波の高さを軽減するのにかなり効果を持っていることがわかった.また津波危険度の局地性についても,計算上の結果が得られた.Several tsunamis accompanying large earthquakes occurred in the coastal vicinity of the Tokaido district, Central Japan. All these tsunamis differed greatly in behavior. The numerical experiments are curried out for these tsunamis to prepare for tsunami hazards and to clarify some of the characteristics of earthquakes in this region. Linear shallow water equations are solved by a space staggered finite difference scheme which is telescoped at selected coastal regions. Many historical documents describing the 1854 Ansei-Tokai tsunami still remain and some investigators have used these documents to estimated the inundation heights at about 50 sites. The numerical experiment of the tsunami based on the published parameters of this earthquake explains satisfactorily the distribution of the real tsunami heights along the coast. Documents describing the 1605 Keicho and the 1498 Meio tsunamis are so scarce that estimates of the real inundation heights may be somewhat inaccurate. The source models for these tsunamis are also determined from among several hypothetical models. They are located south of the generating area of the 1854 tsunami. Descriptions of the inundations caused by the 1498 and the 1605 tsunamis in the district's typical harbors of Shimizu and Shimoda are not found in historical documents. The tsunami heights in these two harbors estimated by simulations of these tsunamis are considerably higher than those of recent tsunamis. Local model experiments including the effects of inundated water on land and quadratic bottom friction are made for the Shimizu harbor. It is clearly seen that the difference of the inundation pattern was caused by changes in the coastal geometry such as harbor construction. Attempts are made to zone tsunami hazards by estimating the hydraulic pressure caused by inundated water.
著者
相田 勇
出版者
公益社団法人 日本地震学会
雑誌
地震 第2輯 (ISSN:00371114)
巻号頁・発行日
vol.28, no.4, pp.449-460, 1975-12-10 (Released:2010-03-11)
参考文献数
13
被引用文献数
1 3

On May 21, 1792, a gigantic collapse of Mt. Mayuyama in Shimabara Peninsula, Kyushu, occurred. Following this event, a severe tsunami of about 10 meters in height was generated by the landslide and attacked the coast of Ariake-kai, killing more than 14, 500 persons. Many historical documents tell us the phenomena of this tsunami in fair details, so that we attempted to reconstruct a numerical model of the tsunami consistent with the historical data. In the numerical computation, a finite difference method with a leap-frog system is adapted, and two kinds of source input are tried; one is the prescrived water mass transport normal to shore line and the other the vertical displacement of sea bottom. When the transport of 18, 000m3/min (current speed-20m/sec) per unit length of shore on the center line of landslide area is assumed to be continued during 2 to 4 min, the computed waves agree fairly well with the real tsunami behaviors, the height of tsunami in various places along the coast and the order of the maximum crest in the sequence of a wave train. Therefore, it seems probable that the extraordinary flow of water normal to the shore occurred by some physical mechanisms of the mountain collapse.The energy of this tsunami is estimated to be about 5×1019erg, and this is about 1/100-1/1000 of the available potential energy of the slided material due to the collapse of the mountain. It is significant that the tsunami energy is several times larger than that of the 1968 Hyuganada Earthquake (M=7.5). The wave spreaded over a wide area and gave distructive damages to the coast more than 120km on both side of Ariake-kai.
著者
垣見 俊弘 松田 時彦 相田 勇 衣笠 善博
出版者
公益社団法人 日本地震学会
雑誌
地震 第2輯 (ISSN:00371114)
巻号頁・発行日
vol.55, no.4, pp.389-406, 2003-03-15 (Released:2010-03-09)
参考文献数
49
被引用文献数
9

A new seismotectonic province map of the Japanese Islands and the adjacent areas, which carries maximum magnitudes of earthquake (Mmax) expected for the individual provinces, has been prepared as a revised edition of Kakimi et al. (1994). The major part of the mapped region constitutes an island arc-trench system, which is surrounded by Northwest Pacific Basin (1), Shikoku Basin (2), Philippine Basin (3), Kurile Basin (4), Japan Sea Basins (5), and Korean Peninsula and Tonhai Continental Shelf (6). All of the peripheral provinces have too low seismicity to be given Mmax. The island arc-trench system is subdivided into the following constituent arcs: Kurile Arc (7), Northeast Honshu Arc (8), Izu-Bonin Arc (9), Southwest Honshu Arc (10), Ryukyu Arc (11), Sakhalin Arc (12), and the Tectonic Belt along the Eastern Margin of Japan Sea (13). While the constituent arcs 7 to 11 are divided into three tectonic belts, which remarkably differ from each other in tectonic, seismic, and volcanic activities, from the trench to the inland: Continental Slope on the Trench Side (A), Non-volcanic Outer Belt (B), and Volcanic Inner Belt (C), the constituent arc 10 alone has additionally the Continental Slope on the Marginal Sea Side (D). Province 12 started developing in Late Mesozoic and functioned as a collision belt between the North American Plate (NA) and the Eurasian Plate (EUR) in Late Cenozoic, whereas province 13 is considered to form a current collision belt between NA and EUR plates. Province 11X, Okinawa Trough, is defined as a current rift zone developing between the Tonhai Continental Shelf and the Ryukyu Arc. Some of the provinces are further divided into subprovinces in response to local differences in active faults, seismicity, Mmax etc.All the active faults on land are grouped into seismogenic faults (Matsuda, 1990), which are considered to generate characteristic earthquakes. The magnitudes of earthquake expected for the seismogenic faults (MLmax) are estimated by the equation: log L=0.6ML-2.9 (Matsuda, 1975), where L is the length of the faults in kilometers. The maximum magnitude of earthquake expected for seismogenic faults (MLmax) and the maximum one for historical shallow earthquakes (Mhmax) are compared in each province to choose the larger one as the expected maximum earthquake magnitude (Mmax) for the province. Since no method to decide a seismogenic unit from offshore active faults has been established, Mhmax is tentatively adopted as the Mmax representing the province. Extraordinarily long faults found in inland provinces, which are called the designated faults (Matsuda, 1990), are excluded from estimation of the Mmax. None of the magnitudes of earthquake expected for the designated faults is shown here, because they should be individually estimated. All of the information, such as tectonic geomorphology and geology, characteristics of active (seismogenic) faults, historical earthquakes, modern seismicity, and other, is put into a table to facilitate the identification of a seismotectonic province and the determination of the Mmax and the designated faults. The details of the boundaries between seismotectonic provinces are shown in another table.
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.59, no.4, pp.p519-531, 1984
被引用文献数
4

1741年北海道渡島半島沿岸から津軽地方にかけて襲った津波は,その規模の大きさからみて,地震によるものとする方が考え易い.しかし地震があったとする確かな古記録が,現在のところ見当っていない.そこで渡島大島の噴火によって発生するとしたら,どの程度の津波が期待できるかを見積った.渡島大島北側の大崩壊地形に見合う量の,土石なだれと,空気と混合した大規模な粉体流を仮定して,津波発生の数値実験を行った,結果は渡島沿岸の津波の高さが,1741年津波の1/3~1/4にしかならず,また津波のエネルギーも2桁位小さい.A great tsunami hit the Japan sea coast of Oshima and Tsugaru Peninsulas on Aug. 29, 1741. The idea that the tsunami was caused by the bottom deformation due to a large earthquake might be reasonable because the tsunami was ranked as one of the largest in the sea of Japan. However, there were no old records to prove the tremor or damage due to an earthquake, in contrast with the existence of many records on the eruption of the Oshima-Ohshima volcano.
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.52, no.1, pp.p71-101, 1977
被引用文献数
14
著者
羽鳥 徳太郎 相田 勇 坂下 至功 日比谷 紀之
出版者
東京大学地震研究所
雑誌
東京大學地震研究所彙報 = Bulletin of the Earthquake Research Institute, University of Tokyo (ISSN:00408972)
巻号頁・発行日
vol.58, no.1, pp.187-206, 1983-07-28

Yuasa and Hiro located on the west side of Kii Peninsula, western Japan, have been hit by many large tsunamis which were generated about every 100 to 150 years. Sources of all these tsunamis were offshore between Wakayama and Shikoku along the Nankai Trough. Traces of the inundated level on many houses in the two towns caused by the 1946 Nankaido tsunami (Dec. 21, 1946) were surveyed, using the automatic level from Oct. 18 to 23, 1982. The behavior of the 1946 tsunami run-up on land was investigated and compared with the two historical tsunamis of Hoei (Oct. 28, 1707) and Ansei (Dec. 24, 1854). The results of the present survey are as follows: (1) At Yuasa, the inundation heights of the 1946 tsunami were 3.0-3.5 meters above M.S.L. Ground about 3.0 meters above M.S.L. was inundated, so that 450 houses were inundated but hardly any were washed away. At Hiro, the sea wall strongly protected the main part of town from the 1946 tsunami (This bank was constructed just after the 1854 Ansei tsunami from Mr. Goryo Hamaguchi's personal funds). However, the tsunami energy concentrated at the head of bay along the Egami River. The inundation heights locally reached 5 meters (above M.S.L.) or more and 22 persons were killed. (2) According to old documents, the inundation area of the 1707 Hoei tsunami elongated along the Yamada, Hiro and Egami Rivers. Forty-one lives were lost at Yuasa and 192 at Hiro. Inundation heights above M.S.L. were estimated 4-5 meters at Yuasa and 5-6 meters at Hiro. (3) By the 1854 Ansei tsunami, 28 lives were lost at Yuasa and 36 at Him. The patterns of damage at Yuasa and Hiro are similar to those of the 1707 Hoei tsunami. There remain even now traces of the inundation level on a few old houses in both towns. Inundation heights above M.S.L. were 4.0-4.7 meters at Yuasa and 5.0 meters in the center of Hiro town. Ground about 4.0 meters above M.S.L. was inundated, 0.7 to 1 meter higher than that during the 1946 Nankaido tsunami.
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大學地震研究所彙報 = Bulletin of the Earthquake Research Institute, University of Tokyo (ISSN:00408972)
巻号頁・発行日
vol.59, no.4, pp.519-531, 1985-03-30

1741年北海道渡島半島沿岸から津軽地方にかけて襲った津波は,その規模の大きさからみて,地震によるものとする方が考え易い.しかし地震があったとする確かな古記録が,現在のところ見当っていない.そこで渡島大島の噴火によって発生するとしたら,どの程度の津波が期待できるかを見積った.渡島大島北側の大崩壊地形に見合う量の,土石なだれと,空気と混合した大規模な粉体流を仮定して,津波発生の数値実験を行った,結果は渡島沿岸の津波の高さが,1741年津波の1/3~1/4にしかならず,また津波のエネルギーも2桁位小さい.
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.59, no.4, pp.519-531, 1985-03-30

1741年北海道渡島半島沿岸から津軽地方にかけて襲った津波は,その規模の大きさからみて,地震によるものとする方が考え易い.しかし地震があったとする確かな古記録が,現在のところ見当っていない.そこで渡島大島の噴火によって発生するとしたら,どの程度の津波が期待できるかを見積った.渡島大島北側の大崩壊地形に見合う量の,土石なだれと,空気と混合した大規模な粉体流を仮定して,津波発生の数値実験を行った,結果は渡島沿岸の津波の高さが,1741年津波の1/3~1/4にしかならず,また津波のエネルギーも2桁位小さい.
著者
相田 勇 羽鳥 徳太郎 村井 勇 広井 脩
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.58, no.1, pp.p207-242, 1983
被引用文献数
2

北海道浦河町および浜中町で,津波予報に対する自治体や住民の対応行動の実態を明らかにするため,防災担当者からの実情聴取,住民へのアンケート調査を実施した.昭和57年3月浦河沖地震で,地震災害を受けた浦河町では,地震に対する処理で津波が念頭になかった人が約16%あり,また停電によって情報を得るのに大へん困った人も9.7%という結果が出た.また過去に大きな津波によって,家屋に被災した体験者が過半を占める浜中町では,津波に対する不安感が強く,津波防災意識が高いことがアンケート結果にあらわれている.避難に要する最少限度の時間は,数分乃至10分という結果で,これは津波が100~200m水深の地点から海岸へ到達する時間に見合っている.警報下の船舶の取扱いについては,船のトン数によってかなりはっきりわかれ,小舟は陸へ上げ,大きい船は港外へ避難するという結果が得られている.津波警報は船舶関係老を含めて一般に十分信用して受入れられ,たとえ小津波でも発令することが支持されている.しかし一面では従来の体験をふまえて,各自の判断を加えて行動する自助の意識も強くあらわれている結果となった.In order to investigate the social responses to the tsunami warnings, we conducted letter questionnaires in the towns of Urakawa and Hamanaka in Hokkaido and interviewed officials of the local administrative organs. The results of the questionnaires are as given below. In Urakawa, which was damaged by the 1982 Urakawa-Oki earthquake, about 16 percent of the respondents were so busy settling their damaged houses and furniture that they could not be concerned about the danger of the tsunami. A total of 9.7 percent of the people did not get the news owing to an electrical failure. These results suggest that should a great tsunami immediately follow an earthquake, it might hit the community inhabitants before they can take refuge on the hilltops. In Hamanaka, the majority of the people replied that their houses had suffered some damage from the great tsunamis in the past, while in Urakawa only one percent of the respondents mentioned this. So the people of Hamanaka felt more uneasy about being hit by the tsunami and were more eager about tsunami disaster prevention. But as for the tsunami warnings, the residents of both towns trust them and hope that the Meteorological Agency announces tsunami predictions even though their scale is estimated to be small. They also desire proper measures to make warnings more useful to the local residents. The respondents replied that it takes them five to ten minutes to arrive at the refuge. This is about the same amount of time it takes a tsunami to reach the shore from a point 100 to 200 meters deep after the earthquake occurs. Therefore, it is suggested that if a tsunami off the shore is observed with the tele-meter, we can know in advance when it will hit the shore and quickly work out some countermeasure for it. There are two ways to deal with ships when the tsunami warnings are issued; ships less than 3 tons will be beached, and larger ships will leave the harbor. Our surveys make the fact clear that the inhabitants in general behave properly based on tsunami warnings and their past tsunami experiences.
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.45, no.1, pp.61-78, 1967-06

The spectra of tsunamis observed on a continental shelf are closely related to the spectra of water level fluctuations in ordinary days with the period of 10 to 100 minutes, the so-called back-ground spectra. Therefore, the nature of back-ground oscillations on the shelf in the vicinity of Enoshima Island, Miyagi Prefecture, where a tsunami observatory is located, has been investigated. Theoretical trapped and leaky modes of oscillations were computed for the shelf near Miyagi-Enoshima and also the records of the back-ground oscillations sampled from the data through the year in 1965 were examined by means of the Fourier analysis. The Fourier spectrum averaged through a year coincided fairly well with the theoretical spectrum of the leaky mode for the constant spectral input offshore, particularly in the period band shorter than about 40 minutes. In the periods longer than about 50 minutes, the spectral intensity of the back-ground is much larger than the theoretical spectrum. There is a possibility that the incoming waves which excite back-ground oscillations may be more intensive in the longer period band. Another possibility is the contribution of the trapped waves for this period band. Very often the phase delay time obtained from the phase angle of the Fourier spectrum coincides fairly well with the one derived from the calculated dispersion curve on the assumption that waves start from a localized source with the same phase for all frequency. This suggests the existence of edge waves. However, the coherency analysis of water level variations observed simultaneously at Enoshima and Ofunato, contains an obscurity on the existence of waves propagating along the shelf.陸棚上で観測された津波のスペクトルは,特別な擾乱源のない平常時の海面振動,所謂back groundのスペクトルと密接な関係がある.それ放ここでは,このback ground の海面振動について,計算と実記録の解析の両面より考察を行った.
著者
羽鳥 徳太郎 相田 勇 坂下 至功 日比谷 紀之
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.58, no.1, pp.187-206, 1983-07-28

Yuasa and Hiro located on the west side of Kii Peninsula, western Japan, have been hit by many large tsunamis which were generated about every 100 to 150 years. Sources of all these tsunamis were offshore between Wakayama and Shikoku along the Nankai Trough. Traces of the inundated level on many houses in the two towns caused by the 1946 Nankaido tsunami (Dec. 21, 1946) were surveyed, using the automatic level from Oct. 18 to 23, 1982. The behavior of the 1946 tsunami run-up on land was investigated and compared with the two historical tsunamis of Hoei (Oct. 28, 1707) and Ansei (Dec. 24, 1854). The results of the present survey are as follows: (1) At Yuasa, the inundation heights of the 1946 tsunami were 3.0-3.5 meters above M.S.L. Ground about 3.0 meters above M.S.L. was inundated, so that 450 houses were inundated but hardly any were washed away. At Hiro, the sea wall strongly protected the main part of town from the 1946 tsunami (This bank was constructed just after the 1854 Ansei tsunami from Mr. Goryo Hamaguchi's personal funds). However, the tsunami energy concentrated at the head of bay along the Egami River. The inundation heights locally reached 5 meters (above M.S.L.) or more and 22 persons were killed. (2) According to old documents, the inundation area of the 1707 Hoei tsunami elongated along the Yamada, Hiro and Egami Rivers. Forty-one lives were lost at Yuasa and 192 at Hiro. Inundation heights above M.S.L. were estimated 4-5 meters at Yuasa and 5-6 meters at Hiro. (3) By the 1854 Ansei tsunami, 28 lives were lost at Yuasa and 36 at Him. The patterns of damage at Yuasa and Hiro are similar to those of the 1707 Hoei tsunami. There remain even now traces of the inundation level on a few old houses in both towns. Inundation heights above M.S.L. were 4.0-4.7 meters at Yuasa and 5.0 meters in the center of Hiro town. Ground about 4.0 meters above M.S.L. was inundated, 0.7 to 1 meter higher than that during the 1946 Nankaido tsunami.
著者
相田 勇 梶浦 欣二郎 羽鳥 徳太郎 桃井 高夫
出版者
東京大学地震研究所
雑誌
地震研究所研究速報
巻号頁・発行日
vol.8, pp.58-62, 1964-09

昭和39年6月16日新潟地震調査概報
著者
相田 勇
出版者
公益社団法人 日本地震学会
雑誌
地震 第2輯 (ISSN:00371114)
巻号頁・発行日
vol.28, no.4, pp.449-460, 1975
被引用文献数
3

On May 21, 1792, a gigantic collapse of Mt. Mayuyama in Shimabara Peninsula, Kyushu, occurred. Following this event, a severe tsunami of about 10 meters in height was generated by the landslide and attacked the coast of Ariake-kai, killing more than 14, 500 persons. Many historical documents tell us the phenomena of this tsunami in fair details, so that we attempted to reconstruct a numerical model of the tsunami consistent with the historical data. In the numerical computation, a finite difference method with a leap-frog system is adapted, and two kinds of source input are tried; one is the prescrived water mass transport normal to shore line and the other the vertical displacement of sea bottom. When the transport of 18, 000m<sup>3</sup>/min (current speed-20m/sec) per unit length of shore on the center line of landslide area is assumed to be continued during 2 to 4 min, the computed waves agree fairly well with the real tsunami behaviors, the height of tsunami in various places along the coast and the order of the maximum crest in the sequence of a wave train. Therefore, it seems probable that the extraordinary flow of water normal to the shore occurred by some physical mechanisms of the mountain collapse.<br>The energy of this tsunami is estimated to be about 5&times;10<sup>19</sup>erg, and this is about 1/100-1/1000 of the available potential energy of the slided material due to the collapse of the mountain. It is significant that the tsunami energy is several times larger than that of the 1968 Hyuganada Earthquake (<i>M</i>=7.5). The wave spreaded over a wide area and gave distructive damages to the coast more than 120km on both side of Ariake-kai.