著者
堂前 幸康 川西 亮輔 白土 浩司 原口 林太郎 藤田 正弘 山内 悠嗣 山下 隆義 藤吉 弘亘 秋月 秀一 橋本 学
出版者
一般社団法人 日本ロボット学会
雑誌
日本ロボット学会誌 (ISSN:02891824)
巻号頁・発行日
vol.38, no.1, pp.95-103, 2020 (Released:2020-01-16)
参考文献数
16

We proposed a picking robot system which is apllicable to various mixed items in shelves. The robot has a two-finger gripper which can change the open width of the finger. To determine the position, the pose and the open width when the gripper pick items, we proposed efficient determination algorithm which is based on a RGBD sensor data. In our experiments, 25 items of Amazon Picking Challenge 2015 can be picked well by our proposed system. In this paper, we describe the system, the algorithms and the experimental results.
著者
秋本 直郁 林 昌希 秋月 秀一 青木 義満
出版者
公益社団法人 精密工学会
雑誌
精密工学会誌 (ISSN:09120289)
巻号頁・発行日
vol.84, no.12, pp.1033-1040, 2018-12-05 (Released:2018-12-05)
参考文献数
20

In this paper, we address the problem of performing natural paste synthesis by color adjustment and image completion, in order to solve the completion problem that can specify an object appearing in a completion area. We propose a synthesis network that can extract the context features of the input image and reconstruct an image with the feature, making the inserted object appear in the completion region. In addition, we propose a ingenious method to make input images and learning method using Generative Adversarial Network (GAN) that do not require collection of high cost learning data. We show that color adjustment and image completion based on context features are executed at the same time, and natural pasting synthesis can be performed by using these proposal methods.
著者
長谷川 昂宏 山内 悠嗣 山下 隆義 藤吉 弘亘 秋月 秀一 橋本 学 堂前 幸康 川西 亮輔
出版者
一般社団法人 日本ロボット学会
雑誌
日本ロボット学会誌 (ISSN:02891824)
巻号頁・発行日
vol.36, no.5, pp.349-359, 2018 (Released:2018-07-15)
参考文献数
27

Automatization for the picking and placing of a variety of objects stored on shelves is a challenging problem for robotic picking systems in distribution warehouses. Here, object recognition using image processing is especially effective at picking and placing a variety of objects. In this study, we propose an efficient method of object recognition based on object grasping position for picking robots. We use a convolutional neural network (CNN) that can achieve highly accurate object recognition. In typical CNN methods for object recognition, objects are recognized by using an image containing picking targets from which object regions suitable for grasping can be detected. However, these methods increase the computational cost because a large number of weight filters are convoluted with the whole image. The proposed method detects all graspable positions from an image as a first step. In the next step, it classifies an optimal grasping position by feeding an image of the local region at the grasping point to the CNN. By recognizing the grasping positions of the objects first, the computational cost is reduced because of the fewer convolutions of the CNN. Experimental results confirmed that the method can achieve highly accurate object recognition while decreasing the computational cost.
著者
大木 美加 秋月 秀一 ブロー バティスト 青木 義満 鈴木 健嗣
出版者
特定非営利活動法人 日本バーチャルリアリティ学会
雑誌
日本バーチャルリアリティ学会論文誌 (ISSN:1344011X)
巻号頁・発行日
vol.25, no.3, pp.206-215, 2020-09-30 (Released:2020-09-30)
参考文献数
33

By leveraging the large-scale interactive floor projection system installed in a special-needs school gymnasium (FUTUREGYM), we aim to support youths with special needs in the acquisition of proper working procedures when cleaning the floor. The trajectory of a mop can be visualized by floor projection after or during the cleaning session. In order to manipulate tools for cleaning, the ability of spatial perception and coordinated movement is necessary, which is sometimes difficult for people with Neurodevelopmental disorders (ND). Here, we verified three different kinds of floor projection methods to give feedback of the trajectory of the mop, which is generated according to the position of both the person and the mop.
著者
橋本 学 斎藤 正孝 秋月 秀一
出版者
公益社団法人 精密工学会
雑誌
精密工学会学術講演会講演論文集 2011年度精密工学会秋季大会
巻号頁・発行日
pp.926-927, 2011 (Released:2012-03-05)

テンプレート画像における参照画素数を大幅に削減することによって高速化を実現するアルゴリズムを提案する.画像の濃度共起情報を利用し,発生確率が低いほど独自性が高いとして優先的に利用することで,画像全体の0.4~1%の画素数で高信頼のマッチングを実現した.また,これを更新型テンプレートマッチングに応用し,背景変動をモデリングして前景部分を重視することにより,時間的にもロバストな性能を達成した.長時間にわたって撮影したプリント基板画像数千枚による実験により,目的の部品を安定的に認識可能なことを確認した.