著者
若槻 壮市 山田 悠介 Leonard M. G. CHAVAS 五十嵐 教之 川崎 政人 加藤 龍一 平木 雅彦 松垣 直宏
出版者
公益社団法人 日本薬学会
雑誌
YAKUGAKU ZASSHI (ISSN:00316903)
巻号頁・発行日
vol.130, no.5, pp.631-640, 2010-05-01 (Released:2010-05-01)
参考文献数
10
被引用文献数
2 2

The Targeted Protein Research Program (TPRP) started in 2007 as a sequel of the Protein 3000 Project which lasted from 2002 to 2007. In the new project, four cores, Protein Production, Structure Analysis, Control of Protein Functions with Compounds, and Informatics, have been established as focus of methodology developments critical for functional and structural studies by the target protein research teams. Within the “Analysis Core” synchrotron radiation plays a pivotal role providing X-ray beams for structural analyses of the target proteins. The two large Japanese synchrotron radiation facilities, SPring-8 and Photon Factory (PF), along with three protein crystallography groups from Hokkaido, Kyoto and Osaka Universities have teamed up to develop two complementary micro-beam beamlines, one on each synchrotron site, and associated technologies for cutting edge structural biology research. At the PF, there are 5 operational beamlines which are equipped with state-of-the-art instrumentation for high-throughput protein crystallography experiments. Within the TPRP framework, the PF is developing a micro-focus beamline optimized for a lower energy single anomalous diffraction (SAD) experiment. This will be particularly useful for structure determination of difficult protein targets for which heavy atom derivatives or selenomethionine substitution does not work and other standard phasing methods fail to give structure solutions. This will augment the capabilities of the PF structural biology beamlines with similar look-and-feel experimental environments.
著者
若槻 壮市
出版者
日本結晶学会
雑誌
日本結晶学会誌 (ISSN:03694585)
巻号頁・発行日
vol.62, no.4, pp.234-237, 2020-12-22 (Released:2020-12-26)
参考文献数
15

Future of structural life science will continue to rely on crystallography using X-ray and electron beams. Multi-modal, multi spatio-temporal scale imaging will be the key to understanding complex biological phenomena at both fundamental biology and translational biomedical or industrial applications. This transformation is influencing the way structural and functional studies are carried out around the globe, and large insfrastructure facilities and institutions are developing new modus operandi to enable biology and medical communities accessing vast and diverse range of technologies, including X-ray, electron, photon, and neutron sources, and AI/ML.
著者
川崎 政人 若槻 壮市 加藤 龍一 五十嵐 教之 平木 雅彦 松垣 直宏 山田 悠介 鈴木 喜大 RAHIGHI Simin ROHAIM Ahmed
出版者
大学共同利用機関法人高エネルギー加速器研究機構
雑誌
基盤研究(C)
巻号頁・発行日
2007

NF-κBは、免疫、炎症、抗アポトーシスなどに関わる様々な遺伝子の転写を活性化する転写因子であり、NEMOにより活性化される。NEMOはLys63結合ユビキチン鎖と結合すると報告されていたが、意外なことにユビキチンが直列につながったタンデムユビキチン鎖により強く結合してNF-κBを活性化することが判明した。タンデムユビキチンとNEMOの複合体の結晶構造解析の結果、NEMOはコイルドコイル二量体の両面で2分子のタンデムユビキチンを対称的に結合しており、NEMOによるユビキチン鎖の選択的認識機構が明らかになった。