著者
大仁田 義裕 加藤 信 小森 洋平 酒井 高司 橋本 義武 小池 直之 田中 真紀子 入江 博 宇田川 誠一 谷口 哲也 GUEST Martin 田丸 博士 江尻 典雄 安藤 直也
出版者
大阪市立大学
雑誌
基盤研究(A)
巻号頁・発行日
2005

微分幾何学における部分多様体論は,ガウス以来の歴史の長い学問分野で,常に他の諸分野と関わりながら発展してきた.本研究課題は,有限次元および無限次元リー理論,幾何学的変分問題,可積分系理論,幾何解析等の分野と関わり,伝統的な方法を踏まえ無限次元的手法まで視点を広げて,部分多様体論の研究を広範かつ集中的に組織・推進した.有限次元および無限次元等径部分多様体,ラグランジュ部分多様体のハミルトン変分問題,調和写像と可積分系等を研究推進,新しい方法と結果を与えた.また,この研究領域における国際的な協力体制を整備し,若手研究者たちの活動も大いに促進した.
著者
MARTIN Guest 神島 芳宣 徳永 浩雄 前田 吉昭 宮岡 礼子 河野 俊丈 大仁田 義裕 酒井 高司 SERGEI V Ketov 赤穂 まなぶ 乙藤 隆史 小林 真平 黒須 早苗
出版者
早稲田大学
雑誌
基盤研究(A)
巻号頁・発行日
2009

報告者は興味深い非自明な現象を示す,いくつかの重要な例についての進展を得ることが出来た.論文 "Nonlinear PDE aspects of the tt* equations of Cecotti and Vafa" (M. Guest and C.-S. Lin, J. reine angew. Math., 印刷中)では,tt*-戸田方程式の,滑らかな解の族の存在を示した.これは技術的観点に於けるブレイクスルーである,すなわち,既存のループ群論的アプローチが適用できない非コンパクトの場合にも,偏微分方程式論が有用であることを示したことは大きな進展である."Isomonodromy aspects of the tt* equations of Cecotti and Vafa I. Stokes data" (M. Guest, A. Its, and C.-S. Lin, arXiv:1209.2045) に於いてはtt*-戸田方程式の解の大域的な滑らかさを,付随する線形方程式のモノドロミーデータ(ストークスデータ)に関連付けることにより,また別の技術的側面に関するブレイクスルーがあった.より詳しくには,tt*-戸田方程式の全ての滑らかな大域解に対して,そのストークスデータを明示的に計算することが出来た.これらの技術はまた,微分幾何学に於けるその他の問題にも適用可能であると推測される。