著者
上野 健爾 土屋 昭博 河野 俊丈 伊達 悦朗 神保 道夫 柏原 正樹 松本 尭生 三輪 哲二
出版者
京都大学
雑誌
重点領域研究
巻号頁・発行日
1992

本研究は重点領域研究「無限自由度の可積分系の理論とその応用」の成果取りまとめのために行われた。平成4年度から5年間にわたって行われた本重点領域研究では無限自由度の可積分系の理論を中心に数多くの重要な成果が得られたが、これらの成果を有機的にまとめ、今後の研究へのひとつの指針を与えることが本研究の目指したものである。具体的には2次元格子模型、共形場理論、量子群、3,4次元トポロジー、無限自由度の可積分系と関係した代数幾何学に関してさらに研究を進め、今までに得られた成果をさらに高い立場から見直すことを行った。この結果、Calabi-Yau多様体のミラー対称性や量子コホモロジー群、量子群の表現と古典関数のq類似、3,4次元多様体の位相不変量などに関する研究において新しい知見が得られた。さらにこれらの成果は、非線型幾何学とも呼ぶべき新しい幾何学が背後にあることを強く示唆している。特に深谷のグループはCalabi-Yau多様体のミラー対称性を幾何学的に新しい見地から論じ、今後の研究に重要な一歩を踏み出した。また本年度の研究によって、神保のグループを中心に離散的Painleve方程式が幾何学的な構造を持つことが明瞭にされ、可積分系のもつ幾何学的構造の豊かさが改めて明らかになった。今後は、本重点領域研究の成果に基づき、非線型幾何学の建設へ研究が大きく前進していくことが期待される。
著者
河野 俊丈
出版者
一般社団法人 日本数学会
雑誌
数学 (ISSN:0039470X)
巻号頁・発行日
vol.51, no.3, pp.326-328, 1999-07-29 (Released:2008-12-25)
参考文献数
3
著者
MARTIN Guest 神島 芳宣 徳永 浩雄 前田 吉昭 宮岡 礼子 河野 俊丈 大仁田 義裕 酒井 高司 SERGEI V Ketov 赤穂 まなぶ 乙藤 隆史 小林 真平 黒須 早苗
出版者
早稲田大学
雑誌
基盤研究(A)
巻号頁・発行日
2009

報告者は興味深い非自明な現象を示す,いくつかの重要な例についての進展を得ることが出来た.論文 "Nonlinear PDE aspects of the tt* equations of Cecotti and Vafa" (M. Guest and C.-S. Lin, J. reine angew. Math., 印刷中)では,tt*-戸田方程式の,滑らかな解の族の存在を示した.これは技術的観点に於けるブレイクスルーである,すなわち,既存のループ群論的アプローチが適用できない非コンパクトの場合にも,偏微分方程式論が有用であることを示したことは大きな進展である."Isomonodromy aspects of the tt* equations of Cecotti and Vafa I. Stokes data" (M. Guest, A. Its, and C.-S. Lin, arXiv:1209.2045) に於いてはtt*-戸田方程式の解の大域的な滑らかさを,付随する線形方程式のモノドロミーデータ(ストークスデータ)に関連付けることにより,また別の技術的側面に関するブレイクスルーがあった.より詳しくには,tt*-戸田方程式の全ての滑らかな大域解に対して,そのストークスデータを明示的に計算することが出来た.これらの技術はまた,微分幾何学に於けるその他の問題にも適用可能であると推測される。