著者
川村 卓 島田 一志 高橋 佳三 森本 吉謙 小池 関也 阿江 通良
出版者
一般社団法人 日本体育学会
雑誌
体育学研究 (ISSN:04846710)
巻号頁・発行日
pp.0812080087, (Released:2008-12-10)
参考文献数
20
被引用文献数
25 4

The purpose of this study was to analyze three-dimensionally two groups of baseball strikers, i.e. high and low swing speed groups, and to compare the kinematics of their upper limb motion. Sixteen skilled male strikers were videotaped with two synchronized high-speed video cameras operating at 200 Hz. One trial in which the maximum bat head speed was achieved was selected for each subject and digitized to obtain three-dimensional coordinates of the segment end-points and the bat using a DLT technique. Subjects were divided into High (n=8) and Low (n=8) groups according to the bat head speed. The angles compared between the two groups were abduction-adduction, horizontal abduction-adduction, flexion-extension and internal-external rotation for both shoulders, flexion-extension for both elbows, supination-pronation for both forearms, radius-ulnar flexion, and dorsi-palmar flexion for both hands. The sequential data were normalized with the time from the point when the speed of the grip was over 3 m/s to the ball impact, and then averaged.
著者
島田 一志 阿江 通良 藤井 範久 川村 卓 高橋 佳三
出版者
日本バイオメカニクス学会
雑誌
バイオメカニクス研究 (ISSN:13431706)
巻号頁・発行日
vol.8, no.1, pp.12-26, 2004-03-31 (Released:2023-03-11)
参考文献数
27
被引用文献数
31

The purpose of this study was to analyze the mechanical energy during baseball pitching for 22 varsity baseball players by using three-dimensional motion analysis technique with two force platforms. Joint torque powers, joint force powers, and segment torque powers of the joints were computed using an inverse dynamics approach.In the energy increasing phase of upper torso, a great deal of mechanical energy flowed into the torso. The mechanical energy transferred to the upper torso due to the segment torque power significantly related to the ball velocity at the release (r=0.480, p<0.05). In the late cocking and accelerating phase, great mechanical energy flowed into the distal segment and the ball due to the joint force power were observed at the throwing arm joints. There were significant relationships between the ball velocity at the release and mechanical energy flows due to the elbow and the wrist joint force powers (r=0.775, p<0.001 and r=0.827, p<0.001). These results suggested that the mechanical energy flows to the upper torso in the energy increasing phase of upper torso and to the throwing arm and ball in the late cocking phase are important to increase the ball release velocity.
著者
川村 卓 島田 一志 高橋 佳三 森本 吉謙 小池 関也 阿江 通良
出版者
一般社団法人 日本体育学会
雑誌
体育学研究 (ISSN:04846710)
巻号頁・発行日
vol.53, no.2, pp.423-438, 2008-12-10 (Released:2009-02-25)
参考文献数
20
被引用文献数
25 4

The purpose of this study was to analyze three-dimensionally two groups of baseball strikers, i.e. high and low swing speed groups, and to compare the kinematics of their upper limb motion. Sixteen skilled male strikers were videotaped with two synchronized high-speed video cameras operating at 200 Hz. One trial in which the maximum bat head speed was achieved was selected for each subject and digitized to obtain three-dimensional coordinates of the segment end-points and the bat using a DLT technique. Subjects were divided into High (n=8) and Low (n=8) groups according to the bat head speed. The angles compared between the two groups were abduction-adduction, horizontal abduction-adduction, flexion-extension and internal-external rotation for both shoulders, flexion-extension for both elbows, supination-pronation for both forearms, radius-ulnar flexion, and dorsi-palmar flexion for both hands. The sequential data were normalized with the time from the point when the speed of the grip was over 3 m/s to the ball impact, and then averaged.1 Angles of elbow extension, forearm supination of the top arm, and ulnar flexion of both hands were much changed. However, the angles of both shoulder joints, bottom elbow and bottom forearm showed little change.2. The High group showed significantly larger shoulder adduction and horizontal adduction of a bottom arm than the Low group in 0–10% time and 50–70% time (p<0.05). The High group showed significantly smaller top elbow extension than the Low group in 40–70% time and 90–100% time (p<0.05).3. The High group showed significantly smaller top hand supination than the Low group in 100% time. In the time, the High group showed significantly larger bottom forearm pronation than the Low group in 50–70% time (p<0.05). The High group showed significantly larger dorsiflexion of the bottom hand than the Low group in 20–30% time (p<0.05).