著者
Takamitsu Waki Masaharu Kodama Midori Akutsu Kiyoshi Namai Masayuki Iigo Takeshi Kurokura Toshiya Yamamoto Kenji Nashima Masayoshi Nakayama Masafumi Yagi
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.OKD-096, (Released:2017-09-29)
被引用文献数
1 13

Double flower and hortensia (mophead) hydrangea (Hydrangea macrophylla (Thunb.) Ser.) traits are recessively inherited. Cross breeding of these traits in hydrangea is difficult because it takes about two years from crossing to flowering. In this study, we aimed to obtain DNA linkage markers that would allow accelerated selection of these traits. We used next-generation sequencing to comprehensively collect DNA sequences from the ‘Kirakiraboshi’ with a double flower and lacecap inflorescence and the ‘Frau Yoshimi’ with a single flower and hortensia inflorescence, and designed simple sequence repeat (SSR) primer pairs for map construction. We screened 768 SSR primer pairs in 93 F2 progeny derived from ‘Kirakiraboshi’ and ‘Frau Yoshimi’. We identified 147 loci, which were expanded to 18 linkage groups with a total map length of 980 cM. Linkage analysis identified that both the double flower trait from ‘Kirakiraboshi’ (dKira) and the hortensia trait from ‘Frau Yoshimi’ (hFrau) were located on linkage group KF_4. Detailed linkage analysis using 351 F2 progeny revealed a 34.8 cM map length between the two loci and identified two tightly linked SSR markers, STAB045 for dKira and HS071 for hFrau. Genetic analysis suggested that double flower and hortensia traits are each controlled by a single recessive gene. Together, the linkage map, SSR markers, and genetic information obtained in this study will be useful for future hydrangea breeding.
著者
Masaharu Kodama Yuta Tanabe Masayoshi Nakayama
出版者
一般社団法人 園芸学会
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.MI-131, (Released:2016-04-05)
被引用文献数
13

In many Hydrangea cultivars, sepal color depends on soil conditions. The traditional concept is that different levels of absorption of aluminum ions from soil and its accumulation in sepal vacuoles changes Hydrangea sepal color. To investigate how sepal coloration can be stabilized, we examined the components that may contribute to color variability according to the traditional concept. Using 10 cultivars and lines with sepals of stable red or stable blue color plants or with sepals of variable color (red or purple) plants grown in acid soils and alkaline soils, we analyzed sepal pH and sepal contents of anthocyanin, aluminum ion, 5-O-caffeoylquinic acid, and 3-O-caffeoylquinic acid. Sepals of all cultivars became bluer when plants were grown in acid soil than when they were grown in alkaline soil, even if the change in stable color plants was milder than that of variable color plants. The same component changes probably happen in sepals of both stable and variable color plants in response to different soil conditions to cause the coloration change. When the two soil conditions were compared, a statistically significant difference was detected for delphinidin 3-glucoside, which is a major anthocyanin of Hydrangea, in the variable-color line ‘HH2’ and for 3-O-caffeoylquinic acid in the stable red line ‘HH19’, but not for any other compound examined, including aluminum ions. Although there is possibility that localization of aluminum ions in vacuoles of the colored cells changes, it is assumed that changes in contents of aluminum ion chelaters such as phosphoric acid affect the sepal color change in response to different soil conditions, as well as the coloration stability or variability. When cultivars were compared in terms of properties of sepal coloration, although contents of aluminum ions and 5-O-caffeoylquinic acid tended to be higher in stable blue cultivars than in other cultivars, these differences were not statistically significant. In agreement with previous reports, our data indicate that a lower content of 3-O-caffeoylquinic acid is essential for blue Hydrangea sepals.