著者
Takamitsu Waki Masaharu Kodama Midori Akutsu Kiyoshi Namai Masayuki Iigo Takeshi Kurokura Toshiya Yamamoto Kenji Nashima Masayoshi Nakayama Masafumi Yagi
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.OKD-096, (Released:2017-09-29)
被引用文献数
1 13

Double flower and hortensia (mophead) hydrangea (Hydrangea macrophylla (Thunb.) Ser.) traits are recessively inherited. Cross breeding of these traits in hydrangea is difficult because it takes about two years from crossing to flowering. In this study, we aimed to obtain DNA linkage markers that would allow accelerated selection of these traits. We used next-generation sequencing to comprehensively collect DNA sequences from the ‘Kirakiraboshi’ with a double flower and lacecap inflorescence and the ‘Frau Yoshimi’ with a single flower and hortensia inflorescence, and designed simple sequence repeat (SSR) primer pairs for map construction. We screened 768 SSR primer pairs in 93 F2 progeny derived from ‘Kirakiraboshi’ and ‘Frau Yoshimi’. We identified 147 loci, which were expanded to 18 linkage groups with a total map length of 980 cM. Linkage analysis identified that both the double flower trait from ‘Kirakiraboshi’ (dKira) and the hortensia trait from ‘Frau Yoshimi’ (hFrau) were located on linkage group KF_4. Detailed linkage analysis using 351 F2 progeny revealed a 34.8 cM map length between the two loci and identified two tightly linked SSR markers, STAB045 for dKira and HS071 for hFrau. Genetic analysis suggested that double flower and hortensia traits are each controlled by a single recessive gene. Together, the linkage map, SSR markers, and genetic information obtained in this study will be useful for future hydrangea breeding.
著者
Kenji Nashima Makoto Takeuchi Chie Moromizato Yuta Omine Moriyuki Shoda Naoya Urasaki Kazuhiko Tarora Ayaka Irei Kenta Shirasawa Masahiko Yamada Miyuki Kunihisa Chikako Nishitani Toshiya Yamamoto
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.QH-063, (Released:2023-05-31)

The pineapple (Ananas comosus (L.) Merr.) is an economically important tropical fruit crop. In this study, we performed quantitative trait locus (QTL) analysis using 168 individuals of the F1 population of ‘Yugafu’ × ‘Yonekura’ for 15 traits: leaf color (L*, a*, b*), harvest day, crown number, slip number, stem shoot number, sucker number, fruit weight, fruit height, fruit diameter, fruit shell color, soluble solid content, acidity, and ascorbic acid content. The constructed single-nucleotide polymorphism (SNP)-based genetic linkage map consisted of a total genetic distance of 2,595 cM with 3,123 loci, including 22,330 SNPs across 25 chromosomes. QTL analysis detected 13 QTLs for 9 traits: leaf color a*, harvest day, fruit weight, fruit height, fruit diameter, fruit shell color, soluble solid content, acidity, and ascorbic acid content. The causative gene for each QTL was predicted with two genes identified as candidate genes. The AcCCD4 gene on Aco3.3C08 was the predicted causative gene for the shell color QTL, which negatively controls shell color by carotenoid degradation. The Myb domain protein-encoding gene on Aco3.3C02 was the predicted causative gene for shell color and leaf color a* QTL, which positively regulates anthocyanin accumulation. The QTL and gene information provided here contributes to future marker-assisted selection for fruit quality.
著者
Sogo Nishio Shingo Terakami Toshimi Matsumoto Toshiya Yamamoto Norio Takada Hidenori Kato Yuichi Katayose Toshihiro Saito
出版者
一般社団法人 園芸学会
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.OKD-093, (Released:2017-07-21)
被引用文献数
16

The chestnut (genus Castanea) has a long juvenile phase, and breeders have to wait three years or more to evaluate nut traits. Therefore, molecular markers associated with genes of interest are required to speed the selection process in chestnut breeding programs. Genetic linkage maps of the Japanese chestnut were constructed using two breeding populations derived from crosses between ‘Kunimi’ and breeding line ‘709-034’ (Kx709), and between ‘Porotan’ and ‘Tsukuba-43’ (Px43). Maps of the four parents and two integrated maps (one representing each cross) were constructed using 443 simple sequence repeat markers (SSRs) and 554 single-nucleotide polymorphism markers. In the Kx709 integrated map, which was the most saturated of the six maps, 12 linkage groups were identified that covered 668.1 cM with an average distance of 0.8 cM between loci. Using anchor SSRs, these six maps were successfully aligned to the Chinese chestnut consensus map. We evaluated eight important traits, including several nut traits, to identify molecular markers associated with these traits. At least one significant quantitative trait locus (QTL) was detected for each of the eight traits (21 in total). Logarithm of odds (LOD) values and phenotypic variance explained by these QTLs ranged from 2.60 to 7.90 and from 11.6% to 29.1%, respectively. In the Kx709 population analysis, several QTLs for nut harvesting date (HARVEST) and pericarp splitting (SPLIT) were detected. Under the assumption that the effects of these QTLs are additive, the percentage of total phenotypic variance explained by the combination of QTLs was high for both HARVEST (47.5%–60.8%) and SPLIT (33.4%–41.7%). Because these mapping populations and their parents are essential materials for Japanese chestnut breeding programs, these QTLs will soon be used for marker-assisted selection to improve breeding efficiency.
著者
Shigeki Moriya Miyuki Kunihisa Kazuma Okada Hiroshi Iwanami Hiroyoshi Iwata Mai Minamikawa Yuichi Katayose Toshimi Matsumoto Satomi Mori Harumi Sasaki Takashi Matsumoto Chikako Nishitani Shingo Terakami Toshiya Yamamoto Kazuyuki Abe
出版者
一般社団法人 園芸学会
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.MI-156, (Released:2016-07-23)
被引用文献数
21

During apple (Malus × domestica Borkh.) storage, a loss in fruit firmness can occur. This is frequently associated with mealiness, an undesirable trait. There have been studies, such as phenotypic analyses and transcriptomics, as well as others employing a transgenic approach, focusing on this trait. Certain genetic approaches, such as quantitative trait loci (QTL) approach, however, have not been attempted. In this study, to identify and characterize QTLs controlling flesh mealiness and to investigate their application in apple breeding, we performed classical QTL mapping based on a bi-parental population and a genome-wide association study (GWAS) of mealiness. Phenotypic data for mealiness allowed us to identify two QTLs in the bi-parental family located on linkage group 10. The GWAS discovered significant marker-trait associations on chromosomes 2, 9, and 10. The MdPG1 locus, located on chromosome 10, was identified as the locus with the strongest significance by both QTL mapping and GWAS, suggesting its primary contribution to flesh mealiness. Using a tri-allelic simple sequence repeat marker, Md-PG1SSR10kd, 10 kb downstream of the MdPG1 coding sequence, we divided apple accessions into six groups based on their genotypes. Among the six groups, the Md-PG1SSR10kd genotype “2/2” had the least mealy phenotype.
著者
Chunfen Zhang Sota Sato Tatsuro Tsukuni Mamoru Sato Hatsuhiko Okada Toshiya Yamamoto Masato Wada Shogo Matsumoto Nobuyuki Yoshikawa Naozumi Mimida Kaori Takagishi Manabu Watanabe Qiufen Cao Sadao Komori
出版者
一般社団法人 園芸学会
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.MI-094, (Released:2016-04-26)
被引用文献数
3

To select cultivars to produce doubled haploids (DHs) efficiently in an anther culture, a total of 28 apple cultivars (25 cultivars and 3 rootstock cultivars) were investigated to assess their callus formation rate, embryo formation rate, shoot formation rate from embryo and efficiency of shoot multiplication and acclimatization. The callus formation rates of ‘Red Astrachan’, ‘Kinsei’, ‘Tsugaru’, ‘Golden Delicious’ (‘GD’), ‘American Summer Pearmain’ (‘ASP’), ‘Gala’, ‘Rome Beauty’, and ‘Jonathan’ were high, but ‘JM2’ and ‘King of Tompkins’ formed no callus. Regarding the embryo formation rates, ‘ASP’, ‘Rome Beauty’, ‘M.9’, and ‘Starking Delicious’ (‘SD’) were high, but ‘GD’, ‘JM2’, ‘King of Tompkins’, ‘Ralls Janet’, and ‘Smith’s Cider’ formed no embryo. Regarding the shoot formation rate from embryos, ‘Senshu’, ‘Tsugaru’, and ‘Sansa’ showed high values, but ‘Fuji’, ‘Jonathan’, and ‘Wijcik’ did not form shoots at all. The rate of shoot formation from anthers showed a high–low order of ‘Senshu’, ‘SD’, ‘ASP’, and ‘Tsugaru’. Multiplication and acclimatization of the shoots were not easy. Many individuals died. Eventually, only ‘Senshu’ and ‘SD’ acclimatized. Therefore, cultivars that produced DHs efficiently were ‘Senshu’ and ‘SD’. The results indicated that all processes of “embryo formation”, “shoot induction”, and “shoot multiplication and acclimatization” are important for obtaining DHs in apple anther cultures.