著者
Takamitsu Waki Masaharu Kodama Midori Akutsu Kiyoshi Namai Masayuki Iigo Takeshi Kurokura Toshiya Yamamoto Kenji Nashima Masayoshi Nakayama Masafumi Yagi
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.OKD-096, (Released:2017-09-29)
被引用文献数
1 13

Double flower and hortensia (mophead) hydrangea (Hydrangea macrophylla (Thunb.) Ser.) traits are recessively inherited. Cross breeding of these traits in hydrangea is difficult because it takes about two years from crossing to flowering. In this study, we aimed to obtain DNA linkage markers that would allow accelerated selection of these traits. We used next-generation sequencing to comprehensively collect DNA sequences from the ‘Kirakiraboshi’ with a double flower and lacecap inflorescence and the ‘Frau Yoshimi’ with a single flower and hortensia inflorescence, and designed simple sequence repeat (SSR) primer pairs for map construction. We screened 768 SSR primer pairs in 93 F2 progeny derived from ‘Kirakiraboshi’ and ‘Frau Yoshimi’. We identified 147 loci, which were expanded to 18 linkage groups with a total map length of 980 cM. Linkage analysis identified that both the double flower trait from ‘Kirakiraboshi’ (dKira) and the hortensia trait from ‘Frau Yoshimi’ (hFrau) were located on linkage group KF_4. Detailed linkage analysis using 351 F2 progeny revealed a 34.8 cM map length between the two loci and identified two tightly linked SSR markers, STAB045 for dKira and HS071 for hFrau. Genetic analysis suggested that double flower and hortensia traits are each controlled by a single recessive gene. Together, the linkage map, SSR markers, and genetic information obtained in this study will be useful for future hydrangea breeding.
著者
Kenji Nashima Makoto Takeuchi Chie Moromizato Yuta Omine Moriyuki Shoda Naoya Urasaki Kazuhiko Tarora Ayaka Irei Kenta Shirasawa Masahiko Yamada Miyuki Kunihisa Chikako Nishitani Toshiya Yamamoto
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.QH-063, (Released:2023-05-31)

The pineapple (Ananas comosus (L.) Merr.) is an economically important tropical fruit crop. In this study, we performed quantitative trait locus (QTL) analysis using 168 individuals of the F1 population of ‘Yugafu’ × ‘Yonekura’ for 15 traits: leaf color (L*, a*, b*), harvest day, crown number, slip number, stem shoot number, sucker number, fruit weight, fruit height, fruit diameter, fruit shell color, soluble solid content, acidity, and ascorbic acid content. The constructed single-nucleotide polymorphism (SNP)-based genetic linkage map consisted of a total genetic distance of 2,595 cM with 3,123 loci, including 22,330 SNPs across 25 chromosomes. QTL analysis detected 13 QTLs for 9 traits: leaf color a*, harvest day, fruit weight, fruit height, fruit diameter, fruit shell color, soluble solid content, acidity, and ascorbic acid content. The causative gene for each QTL was predicted with two genes identified as candidate genes. The AcCCD4 gene on Aco3.3C08 was the predicted causative gene for the shell color QTL, which negatively controls shell color by carotenoid degradation. The Myb domain protein-encoding gene on Aco3.3C02 was the predicted causative gene for shell color and leaf color a* QTL, which positively regulates anthocyanin accumulation. The QTL and gene information provided here contributes to future marker-assisted selection for fruit quality.
著者
Akemi Ohmiya Masaya Kato Takehiko Shimada Kenji Nashima Sanae Kishimoto Masayasu Nagata
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.UTD-R003, (Released:2019-03-12)
被引用文献数
29

Carotenoids are isoprenoid pigments, which are widely distributed in nature. In fruits and flowers, carotenoids are responsible for bright yellow, orange, and red colors and provide a substrate to form flavor compounds, which attract pollinators and seed dispersers. In leaves, carotenoids play an essential role in photosynthesis. When carotenoids are ingested in the diet, they play a vital role in human nutrition and health as a precursor of vitamin A, antioxidants, and anti-inflammatory agents. It is therefore important to control carotenoid accumulation to improve the commercial value of horticultural crops. Carotenoid accumulation is regulated by flux through the carotenoid biosynthetic pathway, and also by degradation and sequestration into plastids, which function as sink organelles. These processes are mostly controlled at the transcriptional levels of relevant genes. In this review, we summarize recent advances in studies on the molecular mechanisms that regulate carotenoid accumulation in vegetables, fruits, and ornamental flowers.