著者
Sayuko Shiraishi Tamami Haraguchi Saki Nakamura Honami Kojima Ikuo Kawasaki Miyako Yoshida Takahiro Uchida
出版者
公益社団法人日本薬学会
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
vol.65, no.2, pp.151-156, 2017-02-01 (Released:2017-02-01)
参考文献数
31

The purpose of the study was to evaluate suppression of the bitterness intensity of bitter basic drugs by chlorogenic acid (CGA) using the artificial taste sensor and human gustatory sensation testing and to investigate the mechanism underlying bitterness suppression using 1H-NMR. Diphenhydramine hydrocholoride (DPH) was the bitter basic drug used in the study. Quinic acid (QNA) and caffeic acid (CFA) together form CGA. Although all three acids suppressed the bitterness intensity of DPH in a dose-dependent manner as determined by the taste sensor and in gustatory sensation tests, CFA was less effective than either CGA or QNA. Data from 1H-NMR spectroscopic analysis of mixtures of the three acids with DPH suggest that the carboxyl group, which is present in both QNA and CGA but not CFA, interact with the amine group of DPH. This study showed that the bitterness intensity of DPH was suppressed by QNA and CGA through a direct electrostatic interaction with DPH as confirmed in 1H-NMR spectroscopic analysis. CGA and QNA may therefore be useful bitterness-masking agents for the basic drug DPH.
著者
Takahiro Uchida Yuka Sugino Mai Hazekawa Miyako Yoshida Tamami Haraguchi
出版者
公益社団法人日本薬学会
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
vol.60, no.8, pp.949-954, 2012-08-01 (Released:2012-08-01)
参考文献数
13
被引用文献数
4 4

The bitterness of 10 different products with ambroxol as active ingredient, the original and nine generics, were evaluated by human gustatory sensation tests in which the tablets were kept in the mouth, with water, at 20 and 37°C. The products all showed different bitterness intensities. The original and some of the generic products had comparatively low bitterness intensities but some of the generic products had comparatively high bitterness intensities. The bitterness intensities of these 10 was found to be significantly correlated with both the disintegration time, as evaluated using the ODT-101 (a recently developed apparatus), and the drug concentration in dissolved medium, as measured in a conventional dissolution test. The bitterness threshold of ambroxol solution was found to increase when the temperature of the water with which the tablets were taken, was raised from 20 to 37°C. The equation was calculated to predict the bitterness intensity of ambroxol, a function based on temperature and the ambroxol concentration using data from a standard ambroxol solution at 4, 20 and 37°C. The bitterness intensities obtained for the 10 ambroxol formulations with water at 20 and 37°C, coincided with the bitterness values predicted by the equation.
著者
Mio Tange Akino Matsumoto Miyako Yoshida Honami Kojima Tamami Haraguchi Takahiro Uchida
出版者
公益社団法人日本薬学会
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
vol.65, no.1, pp.36-41, 2017-01-01 (Released:2017-01-01)
参考文献数
28

The purpose of the study was to evaluate the adsorption of filgrastim on infusion sets (comprising infusion bag, line and filter) and to compare the adsorption of the original filgrastim preparation with biosimilar preparations using HPLC. The inhibitory effect of polysorbate 80 on this adsorption was also evaluated. Filgrastim was mixed with isotonic sodium chloride solution or 5% (w/v) glucose solution in the infusion fluid. Filgrastim adsorption on infusion sets was observed with all preparations and with both types of infusion solution. The adsorption ratio was about 30% in all circumstances. Filgrastim adsorption on all parts of the infusion set (bag, line and filter) was dramatically decreased by the addition of polysorbate 80 solution at concentrations at or over its critical micelle concentration (CMC). The filgrastim adsorption ratio was highest at a solution pH of 5.65, which is the isoelectric point (pI) of filgrastim. This study showed that the degree of filgrastim adsorption on infusion sets is similar for original and biosimilar preparations, but that the addition of polysorbate 80 to the infusion solution at concentrations at or above its CMC is effective in preventing filgrastim adsorption. The addition of a total-vitamin preparation with a polysorbate 80 concentration over its CMC may be an effective way of preventing filgrastim adsorption on infusion sets.