著者
小松 真理子
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.22, no.147, pp.147-153, 1983 (Released:2021-09-24)

The basic problems of this paper are as follows. Why did Roger Bacon attach importance to mathematics in relation with natural sciences and didn't Thomas Aquinas do so? Why did Bacon advocate the original idea of Scientia Experimentalis and didn't Thomas do so? Bacon's praise of mathematics is due to his presupposition of multiplicatio specierum about general actions in the natural world. Because Thomas didn't have such presupposition and moreover made a rigid distinction between mathematics and natural sciences, that is sciences of natura, Thomas didn't attach importance to mathematics for natural sciences. On the other hand, because of this rigid distinction, Thomas' view to mathematics presents even certain modernity where mathematics is regarded as a free hypothetico-deductiva system according to imagination. Bacon couldn't regard mathematics as a hypothetical system, because mathematics of him was linking with structures of existence. Bacon's idea of Scientia Experimentalis containing the idea of "verification" was possible only upon Bacon's more mediaeval conception of "experience", and the idea of "verification" like Bacon was impossible upon Thomas' more modern conception of "experience". Verification of Bacon is certificatio of conclusion by experience, and it means real proof by noble experience which directly proves truth, and doesn't mean test as procedure. Such idea of verification wasn't able to occur to Thomas upon Thomas' conception of experience as sources of science. Therfore also here the situation is paradoxical, and Bacon's idea of verification doesn't have but superficial modernity. Finally criticism on Crombie's view is added.
著者
小林 龍彦 田中 薫
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.22, no.147, pp.154-159, 1983 (Released:2021-09-24)

We studied Problems of the Pierced Object in the Old Japanese Mathematics and we took statistics on these problems in mathematical Tablets. The investigation revealed the fact that many problems were studied during the Bunsei (1818〜1830), especially in and around Edo. And after that period they spread in the country. The main objects of this paper are to give the analysis of the above-mentioned investigation, especially to make the history of mathematical solution clear in these problems.

1 0 0 0 OA 紹介

出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.22, no.147, pp.177, 1983 (Released:2021-09-24)
著者
中村 邦光 板倉 聖宣
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.22, no.148, pp.193-205, 1983 (Released:2021-09-24)

In our last paper titled "The Value of Pi in the Edo Period" (Kagakusi Kenkyu, No.143, 1982. pp. 142-152), we did an exhaustive review of the books of native mathematics of Japan published in the Bunsei Era (1818-1830), and showed that these books could be divided into two types according to the two pi values (i.e. 3.14... and 3.16...) they respectively adopted. Specifically, the relatively advanced books of mathematics adopted 3.14..., while the value of 3.16... was generally used in popular booklets of the Jinkoki type and the like. It had been more than 150 years since Muramatsu correctly demonstrated the pi value of 3.14... in his Sanso published in 1663, but a considerable number of books still adopted 3.16... as the pi value in our period of study. Then, the next question would be how the correct value of 3.14... demonstrated by Muramatsu was handed down to the mathematicians of the Edo Period and disseminated. We carried our study a step further in this direction and tried to clarify the adoption process. As a result of our extensive research and analysis, we believe that we have successfully traced the adoption process of 3.14... instead of 3.16... as the value of pi. Among the various issues treated in this paper, the following points would be of particular interest. 1. After Muramatsu's Sanso (published in March,1663), the first book with 3.14... as the value of pi was Nozawa's Dȏkaishȏ (dated August, 1663 in the preface and published in November,1664), the interval between these books is less than two years. 2. Among the books of mathematics published during the ten years between 1663 and 1673, every one of those with 3.14... as the value of pi made an intentionnal alteration to the value adopted by its predecessor, such as 3.14 (→3.1404)→3.142→3.1416. This phenomenon had some connection with thebmovement to take over the traditional unsolved problems and it continued up to Miyake's Guȏ-sampȏ (published in 1699), in which the value of pi was further changed from 3.1416 to 3.141593. There were even a few cases of alteration from 3.142 to 3.14. 3. With the publication of Zȏho-sampȏ-ketsugishȏ (1684), Zohȏ-shimpenjinkȏki (1686) and Kaizanki-Kȏmoku (1687), the value of pi in the three most widely-read books of native mathematics in the Edo Era, Jinkȏki, Kaizanki and Sampȏ-Ketsugishȏ was altered from 3.16... to 3.14... 4. Upon examining all the books of native mathematics published between 1681 and 1690, we found that there was only one book (i.e. Kambara's Sankanki published in 1685) that had not altered the value of pi to 3.14.... and still used 3.16... All the remaining ten books adopted the value of 3.14... Once having attained this stage, how did it come about that the popular books of native mathematics fell back to the value of pi of 3.16... without any apparent hesitation ? A report, on this issue is now in preparation.
著者
溝口 元
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.22, no.146, pp.99-106, 1983 (Released:2021-09-29)

Dainihonbunmeikyokai (The Great Japanese Culture Society) was the private society and was founded in 1908 with the aid of many prominant scholars and financiers. The president of the society was Shigenobu Okuma (1838-1922), who was the poHtician and founder of Waseda University. The activities of the society were the publication of introducing foreign culture including social science, human science and natural science, which originally published in Europe and USA, analysis of world situation and popular cultural lecture. In the present study, we analyzed the character of the part of natural science published by the society. The total number of the publication is 241 and that of natural science books is 35 including 11 science of science,18 biology, 2 chemistry and 4 engineering. There was no publication of mathematics and physics. This point was markedly different from the books treated by "Nature" and "Science". The originally publishing countries are 17 UK,10 USA, 3 France,1 Germany and 3 books are edited by the society. The selection of the books is probably due to the influence of commissioner of the society such as Chiyomatsu Ishikawa (1861-1935, Biologist) and Matajiro Yokoyama (1860-1942, Geologist) and the inclination of the popular science movement at late Meiji and Taisho period (1908-1924).

1 0 0 0 OA 紹介

出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.22, no.146, pp.120, 1983 (Released:2021-10-06)

1 0 0 0 OA 紹介

出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.22, no.145, pp.57, 1983 (Released:2021-10-06)
著者
小林 龍彦 田中 薫
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.22, no.145, pp.47-50, 1983 (Released:2021-10-06)

Toshisada ENDO, states that the first discovery of cycloid during the Bunsei period (1818〜1828) is attributed to Nei Wada (1787~1840). On the other hand, Yoshio MIKAMI pointed out that the same subject had already been studied by Tadao SHIZUKI (1760〜1806) in his Rekishō Shinsho (vol.1,1798; Vol.2, 1800; Vol.3, 1802). But these works seems to be insufficient, so we have discussed the same subject from astronomical points of view.
著者
小泉 賢吉郎
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.22, no.146, pp.65-72, 1983 (Released:2021-09-29)

This article investigates 18th century speculations on the relation between electricity and magnetism In order to illustrate more clearly speculation on the relation between the two, theories on electricity and magnetism themselves in the latter half of the 18th century are first examined. Although most people at that time held a fluid (or fluids) hypothesis, there were some, such as D. R tenhouse and R Kirwan, who had non-fluid hypotheses, particularly regarding magnetism As to speculations on the relation between electricity and magnetism, surprisingly most people denied that there was any, which seems a .clear indication that there was at that time no lively debate on the issue During the latter half of the 18th century people in general in their discussions of the relationship, referred to the following two facts: first, that the shock of electricity can destroy magnetism, reverse its polarity, and render a needle magnetic; and second, that the Aurora Borealis disturbs a magnetic needle. It is interesting to note that especially the first fact was used as supportive evidence both by those who denied the relation and by those who endorsed it. Those who held a fluid (or fluids) hypothesis found it impossible to perceive of a relationship between electricity and magnetism given the fact that while a magnet could be electrified, yet no changes were observed. In their terminology, an electric fluid (or fluids) and a magnetic fluid (or fluids) coexist in the same body without effect It is clear that that which prevented them from thinking further was not a theory alone, nor a fact alone, but was a theory combined with a fact. Thus, this branch of knowledge was, at that time, a closed world. Some entirely new approach was necessary before a breakthrough could be made.
著者
藤崎 千代子
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.22, no.146, pp.73-85, 1983 (Released:2021-09-29)

I have dealt with the development of the understanding of the origin of the infrared band in the molecular spectrum during the period between 1880 and 1920. Deslandres' law (1886 and 1887) and P.Drude's extended study of dispersion theory,(1904) prepared the first step in understanding the origin of the infrared band spectrum. The second step was closely related to the quantum theories of specific heat of Einstein's (1907) and Nernst's (1911). Einstein's theory implicitly taught that the near infrared band was attributed to atomic vibration. On the other hand, Nernst suggested that molecular rotation energy had relation to specific heat of gases, and that its energy was quantized. In their theories, the infrared band was located as an indicator to prove the quantum theory of specific heat. In the first Solvay Conference(1911),the question about whether the quantization of rotational energy was possible or impossible, was discuussed. In 1911 and 1912, N. Bjerrum who was backed by those researches, attributed the infrared bands to atomic vibration, vibration-rotation and molecular rotation, and related the wavelengths of spectral lines of every band with the energy of every motion, by the aids of the quantum condition of Planck or Rayleigh's theory of 1892. He succeeded to shift the position of the infrared band to the position as the indicator of the molecular structure. Ehrenfest in 1913 revised Bjerrum's theory of rotational spectrum; and then by the aid of his adiabatic hypothesis, he could formulate rotational energy in the stationary state of the quantum number m. The formulation of the rotational energy contributed to the development of the later researches about rotational spectrum. The third step was prepared by the new theories of Bohr's and Sommerfeld's; the new quantum condition, the frequency condition, and the selection rule Schwarzschild in 1916 formed the theory of rotational spectrum, by the aids of th frequency condition and the quantum condition of Sommerfeld. He used Deslandres' law as the guide to prove the validity of his theory of rotational spectrum Younger theorists such as Heurlinger, Lenz and Kratzer formed theories to interprete the occurrence of vibration-rotation, or rotation bands, by the aids of two conditions and a rule (1919 and 1920). They contributed to forming the theoretical model of diatomic molecule The former could determine the quantum number of rotational spectnim, by the aid of the selection rule. Around the same time, Imes found for the first time the fine structure of the vibration-rotation band of hydrogen chloride by means of the infrared spectroscope equipping the diffraction grating (1919 and 1920) His finding proved that Bjerrum's theory of double and was incomplete. Kratzer attempted to form a theory which could interprete the fine structure, by the aids of those conditions and a rule. He contributed to the physical interpretation of "missing", the determination of the distance between nuclei of diatomic molecule, and the confirmation of the attribution of the far infrared band to molecular rotation.
著者
豊田 和二
出版者
日本科学史学会
雑誌
科学史研究 (ISSN:21887535)
巻号頁・発行日
vol.22, no.146, pp.86-98, 1983 (Released:2021-09-29)

Iron metallurgy was widely understood in the Eastern Mediterranean only after 1000 B. c., and objects manufactured from iron appeared on a large scale from about 800 B C One might imagine that the Iron Age in Greece began about 1000 B. c., but recently A.M. Snodgrass has published his opinion that archaeological evidence has confirmed a reaction in favour of bronze, indicating that the introduction of iron caused no radical change in the politics or economy of the period In short, we must relinquish the view of a revolutionary change in Greek society caused by iron products in favour of one of gradual change. The introduction of iron and its general use for masons1 tools meant that they could achieve more work for less labour, time and cost, because of the difficulty of working the hard material with the earlier tools. This permitted the stonemasons of the Late Archaic Age to achieve the great age of temple building in the 6th century B. C. The tools which they used were the pick or pickhammer, point, flat-edged chisel, curved chisel, drove, claw or toothed chisel, drill, rasp and abrasives. The most important among them was the claw chisel that had a cutting edge serrated like saw teeth, and that has been acknowledged as a Greek invention, especially on the mainland. Its marks left on stone date from the second quarter of the 6th century B. C., and its use would probably have spread throughout the Greek world by about 550 B. C. The invention of the claw enabled masons to save time and labour, as the four-toothed tool could accomplish four times as much at a blow as one with singlepoint. These days We have been able to establish that Ionians brought from Greece to Iran the new techniques of using the claw, drill and so on. The most memorable of them was Chersiphron, an architect working on the Artemis temple at Ephesus, who devised a new instrument like enormous garden rollers for transporting great columns, which was probably employed at Persepolis. In conclusion, the technology of Greco-Lydian masonry had come into being by the late 7th century B. C., and spread to Persia with the beginning of the Achaemenian style, following the conquest of the west coast of Asia Minor by King Cyrus, and this stone-working sphere of the Eastern Mediterranean formed by that event, which brought Ionian craftsmen their access to Persia, continued till the early 5th century B. C The reason why Greek craftsmen could attain such wide influence was the rationalisation of time and labour ― to be more specific, the improvement of stonemasons' tools enabled them to process hard stone rapidly and efficiently, in circumstances in which the polis society, the tiny Greek community, could never expect great manpower or wealth like the big powers in the Near East.