- 著者
-
TAKEMURA Kazuto
MUKOUGAWA Hitoshi
- 出版者
- Meteorological Society of Japan
- 雑誌
- 気象集誌. 第2輯 (ISSN:00261165)
- 巻号頁・発行日
- pp.2020-061, (Released:2020-08-03)
- 被引用文献数
-
5
To reveal a maintenance mechanism for Rossby wave breaking (RWB) east of Japan and Pacific-Japan (PJ) pattern, which are triggered due to quasi-stationary Rossby wave propagation along the Asian jet, the past 44 RWB cases east of Japan is analyzed using a reanalysis dataset. A comparison between the composites of 7 persistent and 7 non-persistent cases, which are classified based on duration of the RWB and the PJ pattern, indicates that the persistent case shows the stronger and longer-lived quasi-stationary Rossby wave propagation along the Asian jet. The subsequent stronger RWB in the persistent case causes the consequential formation of the more enhanced PJ pattern, through the stronger high potential vorticity intrusion toward the subtropical western North Pacific. The persistent case further shows a persistent northward tilting vertical structure of the anomalous anticyclone east of Japan, accompanied by the enhanced anomalous warm air advection in the lower to middle troposphere north of the anomalously extended North Pacific Subtropical High associated with the PJ pattern. The Q-vector diagnosis and partial correlation analysis indicate that the anomalous warm air advection in the middle troposphere is closely associated with dynamically induced anomalous ascent from Japan to the east by an adiabatic process. Enhanced anomalous moisture flux convergence from Japan to the east, which is due to moisture inflow along the fringe of North Pacific Subtropical High from the subtropical western North Pacific, also causes the anomalous ascent over the region by a diabatic process. A simple correlation analysis indicates nearly equivalent associations of the adiabatic and diabatic factors with the anomalous ascent. The anomalous ascent contributes to the enhanced and persistent RWB, through negative vorticity tendency due to vortex squashing in the upper troposphere, which further contributes to the enhanced and persistent PJ pattern in the persistent case.