著者
Hsiang-Wen Cheng Shu-Chih Yang Yu-Ching Liou Ching-Sen Chen
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.16, pp.97-103, 2020 (Released:2020-06-26)
参考文献数
16
被引用文献数
2

This study investigates the forecast sensitivity of an afternoon thunderstorm in northern Taiwan to the upstream condition associated with the prevailing warm and moist southwesterly winds on 16 June 2008. This event was initiated near noon and lasted for several hours with a maximum hourly precipitation rate of 69 mm hr−1 at 14 LST.Experiments are conducted to assimilate radial velocity only or both radial velocity and reflectivity data from radars at southwestern and southern Taiwan with the WRF-Local Ensemble Transform Kalman Filter Radar assimilation system. Results show that these experiments can predict the rainfall occurrence in northern Taiwan, but the location and rainfall amount is very sensitive to upstream environmental conditions. Assimilating the unfiltered topography-associated reflectivity noise upstream generates unrealistic light rain and cooling, which leads to a great reduction of rainfall in the target area. The precipitation prediction suggests that a careful topography-based quality control performed on the radar data can be essential to restore the necessary environmental conditions for forecasting the afternoon thunderstorm event.
著者
Ryusuke Masunaga Hisashi Nakamura Hirotaka Kamahori Kazutoshi Onogi Satoru Okajima
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.6-13, 2018 (Released:2018-01-18)
参考文献数
37
被引用文献数
1 14

As an additional product of the Japanese 55-year Reanalysis (JRA-55) project, a new global atmospheric reanalysis product, named JRA-55CHS, is under construction. It utilizes quarter-degree sea-surface temperature (SST) as lower-boundary condition with the same data assimilation system as the JRA-55 Conventional (JRA-55C), into which no satellite data is assimilated. The SST data can resolve steep SST gradients along the western boundary currents (WBCs), which are not necessarily well represented in many of the other atmospheric reanalysis products, including the JRA-55C. The present paper briefly documents basic performance of the JRA-55CHS, through comparing it with the JRA-55C and satellite observations in focusing on the major WBC regions. In the JRA-55CHS, mesoscale atmospheric structures along the WBCs are well reproduced in their climatological-mean fields as captured in the satellite observations. Their interannual- to decadal-scale variations associated with SST variations are also reasonably reproduced. The corresponding atmospheric features are less obvious in the JRA-55C owing to smoother SST prescribed. Furthermore, comparison between the two reanalysis products reveals that the influence of frontal-scale SST distributions can reach into the middle and upper troposphere, especially in summer. The JRA-55CHS will be useful for deepening our understanding of the nature of midlatitude frontal-scale air-sea interactions.
著者
Rimpei Kamamoto Kenji Suzuki Tetsuya Kawano Hiroshi Hanado Katsuhiro Nakagawa Yuki Kaneko
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-020, (Released:2020-06-03)

Two products from the Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) algorithms, a flag of intense solid precipitation above the −10°C height (“flagHeavyIcePrecip”) and a classification of precipitation type (“typePrecip”) were validated by ground-based hydrometeor measurements and X-band multi-parameter (X-MP) radar observations of snow clouds on 4 February 2018. Contoured frequency by altitude diagrams of the X-MP radar reflectivity exhibited a significant difference between footprints flagged and unflagged by the “flagHeavyIcePrecip” algorithm, which indicated that the algorithm is reasonable. The hydrometeor classification (HC) by the X-MP radar, which was confirmed by microphysical evidence from ground-based hydrometeor measurements, suggested the existence of graupel in the footprints with “flagHeavyIcePrecip”. In addition, according to the information of the GPM DPR, the “flagHeavyIcePrecip” footprints were characterized by not only graupel but also large snowflakes. According to the information of X-MP radar HC, the “typePrecip” algorithm by the detection of “flagHeavyIcePrecip” was effective in classifying precipitation types of snow clouds, whereas it seems that there is room for improvement in the “typePrecip” algorithms based on the extended-DPRm-method and H-method.
著者
NAOE Hiroaki MATSUMOTO Takanori UENO Keisuke MAKI Takashi DEUSHI Makoto TAKEUCHI Ayako
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-019, (Released:2020-02-03)
被引用文献数
1

This study constructs a merged total column ozone (TCO) dataset using 20 available satellite Level 2 TCO (L2SAT) datasets over 40 years from 1978 to 2017. The individual 20 datasets and the merged TCO dataset are corrected against ground-based Dobson and Brewer spectrophotometer TCO (GD) measurements. Two bias correction methods are used: simple linear regression (SLR) as a function of time and multiple linear regression (MLR) as a function of time, solar zenith angle, and effective ozone temperature. All of the satellite datasets are consistent with GD within ±2-3%, except for some degraded data from the Total Ozone Mapping Spectrometer/Earth Probe during a period of degraded calibration and from the Ozone Mapping and Profiling Suite (OMPS) provided from NOAA at an early stage of measurements. OMPS data provided from NASA show fairly stable L2SAT-GD differences. The Global Ozone Monitoring Experiment/MetOp-A and -B datasets show abrupt changes of approximately 8 DU coincident with the change of retrieval algorithm. For the TCO merged datasets created by averaging all coincident data located within a grid cell from the 20 satellite-borne TCO datasets, the differences between corrected and uncorrected TCOs by MLR are generally positive at lower latitudes where the bias correction increases TCO because of low effective ozone temperature. In the trend analysis, the difference between corrected and uncorrected TCO trends by MLR shows clear seasonal and latitudinal dependency, whereas such seasonal and latitudinal dependency is lost by SLR. The root mean square difference of L2SAT-GD for the uncorrected merged datasets, 8.6 DU, is reduced to 8.4 DU after correction using SLR and MLR. Therefore, the empirically corrected merged TCO datasets that are converted into time-series homogenization with high temporal-resolution are suitable as a data source for trend analyses as well as assimilation for long-term reanalysis.
著者
CHEN Wei GUAN Zhaoyong YANG Huadong XU Qi
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-014, (Released:2019-12-08)
被引用文献数
6

The East Asian summer monsoon (EASM) and the Australian winter monsoon (AWM) are two important components of the Asian-Australian monsoon system during boreal summer. The simultaneous variations of these two monsoons would have remarkable impacts on climate in the Asian-Australian region. Using the reanalysis datasets, we investigate the mechanisms of variation and impacts of East Asian-Australian Monsoons (EAAMs). The singular value decomposition (SVD) is performed of the June-July-August (JJA) mean anomalous zonal wind for AWM as left field and JJA mean anomalous meridional wind for EASM as the right field after both El Niño-Southern Oscillation (ENSO) and India Ocean Dipole (IOD) signals are filtered out. Our results demonstrate that AWM and EASM are closely related to each other as revealed by the first leading SVD mode. The anomalously strong (weak) EAAMs correspond to anomalously strong (weak) AWM and EASM to the south of 30°N. When EAAMs are anomalously strong, cold sea surface temperature anomaly (SSTA) appears in regions near northern and northeastern coasts of Australia whereas the warmer SSTA appears in the northwestern tropical Pacific and South China Sea. The colder SSTA is associated with the upwelling of cold water from below induced by equatorial easterly anomalies, reinforcing the anticyclonic circulation over Australia through the Matsuno/Gill-type response whereas warm SSTA appears in the northwestern tropical Pacific and South China Sea as a result of oceanic response to the intensified northwest Pacific subtropical anticyclonic circulation. The EASM couples with AWM via the anomalous easterlies near equator in the Maritime Continent (MC) region and the slanted vertical anomalous circulations. In the years with strong EAAMs, precipitation decreases in northern Australia and over areas from the western Pacific to Bohai Sea and Yellow Sea of China. Meanwhile, the western MC and the southeastern China experience more than normal precipitation.
著者
Masato Sugi Yohei Yamada Kohei Yoshida Ryo Mizuta Masuo Nakano Chihiro Kodama Masaki Satoh
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-012, (Released:2020-03-19)
被引用文献数
31

In relation to projections of tropical cyclone (TC) frequency in a future warmer climate, there is a debate on whether the global frequency of TC seeds (weak pre-storm vortices) will increase or not. We examined changes in the frequency of TC seeds by occurrence frequency analysis (OFA) of vortex intensity (vorticity or maximum wind speed). We directly counted the number of vortices with various intensities in high resolution global atmospheric model simulations for present and future climates. By using the OFA we showed a clear reduction of the occurrence frequency of TC seeds and relatively weak (category 2 or weaker) TCs in a future warmer climate, with an increase in the frequency of the most intense (category 5) TCs. The results suggest that the OFA is a useful method to estimate the future changes in TC frequency distribution ranging from TC seeds to the most intense TCs.
著者
Yanjie Li Jin Feng Jianping Li Sen Zhao
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.121-125, 2018 (Released:2018-09-04)
参考文献数
25
被引用文献数
1

Rossby wave propagation theory is reviewed under two kinds of non-uniform basic flows: the zonal mean (ZM) and horizontally non-uniform (HN) flows in this study. The diagrams in the wavenumber domain for stationary and non-stationary waves embedded in the ZM flow are given and discussed in comparison with previous studies. Then a circle diagram in the group velocity domain for waves embedded in the HN flow is derived from the formulas in forms of three vectors: the wavenumber, background wind and gradient of basic-state absolute velocity. Given the basic state, we can identify the maximum and minimum magnitude of group velocity and its departure from the background wind. These results provide insights into Rossby wave propagation behaviors in the real atmosphere.
著者
YOKOYAMA Chie TSUJI Hiroki TAKAYABU Yukari N.
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-013, (Released:2019-11-30)
被引用文献数
31

In this study, we examined the characteristics of a rainfall system that brought heavy rainfall to a broad portion of western Japan on July 5-8, 2018 and the role played by an upper-tropospheric trough which stayed to the rear of the extensive rainfall area during the event. The Dual-frequency Precipitation Radar onboard the core satellite of the Global Precipitation Measurement revealed the significant contribution of rainfall with its top below 10 km, the broad spatial extent covered by stratiform rainfall, and the presence of convective rainfall embedded in the large stratiform rainfall area. These features are characteristic of well-organized rainfall systems. Based on the analysis of meteorological data, large-scale environmental conditions related to the event were found to be relatively stable and very humid throughout most of the troposphere, compared to the climatology. This large-scale environment, which is consistent with previous statistical results for extreme rainfall events, was present across an extensive area of Japan. We found that the trough played an important role in maintaining an environment favorable for the organization of rainfall. Dynamical ascent associated with the trough acted to produce vertical moisture flux convergence in the mid-troposphere and upper troposphere, and moistened most of the troposphere in conjunction with horizontal moisture flux convergence. Humid conditions in the mid- to lower troposphere enhanced the development of deep convection when the lower troposphere was convectively unstable. Once deep convection was promoted in this way, convection itself could moisten the mid- to upper troposphere further through diabatic ascent, thereby loading the free troposphere with moisture. This synergy between the dynamical effect and the diabatic effect enhanced the conditions that allowed for a well-organized rainfall system that produced very heavy rainfall over a large portion of Japan.
著者
Akihiro Hashimoto Hiroki Motoyoshi Narihiro Orikasa Ryohei Misumi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.16, pp.51-56, 2020 (Released:2020-03-25)
参考文献数
36

We have developed a new method of diagnosing the characteristics of ice particles using a bulk microphysics model. Our model tracked the mass compositions of different classes of ice particles, using their microphysical process of origin, such as water vapor deposition and riming. The mass composition from depositional growth was further divided into six components by the temperature and humidity ranges corresponding to the typical growth habits of ice crystals. In test simulations, the new framework successfully revealed the influences of riming and depositional growths of ice particles within clouds and on surface snowfall. The new approach enables weather prediction models to provide much more information on the characteristics of ice particles regarding crystal habits and the extent of riming.
著者
Arata Amemiya Takumi Honda Takemasa Miyoshi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.16, pp.6-11, 2020 (Released:2020-01-28)
参考文献数
18
被引用文献数
7

The observation operator for the Phased Array Weather Radar in the SCALE-LETKF data assimilation system is revisited, and the impact of its improvement on the analyses and forecasts is examined. The observation operator provides a functional relationship between equivalent radar reflectivity factor (Ze) and hydrometeor mass density (W) of each precipitation particle category. The W–Ze relationship is obtained by a radar simulator. This study performs a radiation code calculation with the parameters regarding particle size distribution of graupel consistent with the cloud microphysics scheme in the SCALE model. The newly obtained observation operator provides much stronger sensitivity of graupel mixing ratio to observed Ze compared to the operator originally used in the model. To examine the impact on the SCALE-LETKF analyses and forecasts, an experiment on a 13 July 2013 heavy rain case is performed with the new observation operator and is compared with the previous study. The forecast initiated by the analysis using the new operator shows much more realistic evolution of Ze in the middle troposphere, where a large amount of graupel is located. The overestimation of forecast Ze is significantly alleviated by the new observational operator. The 30-minute forecast of surface precipitation rate is also improved.
著者
Junya Fukuda Munehiko Yamaguchi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.250-256, 2019 (Released:2019-12-26)
参考文献数
19
被引用文献数
2

The effectiveness of multiple ensembles to determine 70% probability-circle radii of operational tropical cyclone (TC) track forecasts in the Japan Meteorological Agency (JMA) is investigated. The ensembles used in this study are global ensembles from JMA, the European Centre for Medium-Range Weather Forecasts (ECMWF), the National Centers for Environmental Prediction (NCEP) and the Met Office in the United Kingdom (UKMO). The verification for all TCs from 2016 to 2018 reveals that the multiple ensemble-based method has stronger correlation with operational TC track forecast errors and the clearer degree of separation among confidence levels derived from the ensemble spreads than the conventional statistical and single ensemble-based methods. It indicates that the multiple ensemble method provides situation-dependent forecast uncertainty most appropriately. As the effectiveness of the multiple ensemble method has been confirmed, JMA started to operate the multiple ensemble-based 70% probability-circle radii for its operational TC track forecasts for all forecast times up to 120 hours in June 2019. The radii are based solely on confidence levels derived from cumulative ensemble spreads of the multiple ensemble from the 4 centers. This is a good example of successful research to operation transfer of The International Grand Global Ensemble (TIGGE) project.
著者
Kazuaki Yasunaga Atsushi Hamada Kazuaki Nishii
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.238-243, 2019 (Released:2019-11-30)
参考文献数
21
被引用文献数
2

This study examines the factors responsible for the long-term changes of winter monsoonal flow around Japan in association with increasing precipitation trends in December along the coastal areas of Honshu (the main island of Japan) facing the Sea of Japan. The precipitation around the tropical eastern Indian Ocean and maritime continent has significantly increased in recent years. Thus, a packet of the stationary Rossby wave associated with the anomalous heating deflects the subtropical jet to the south over the eastern edge of the Eurasian continent. The deflection of the jet gives favorable conditions for the development of a low pressure trough in the lower level on the eastern side, leading to the formation of negative height anomalies near the surface around Japan.Although tropical precipitation also increases in November and January, the anomalous heating induces negative height anomalies and cyclonic circulations over the inland region of China and eastern offshore region of Japan (to the further west and east in comparison with those in December) in these months. As a result, monsoonal flow around Japan (and precipitation along the coastal areas of the Sea of Japan) shows no long-term trends in November or January.
著者
AWAZU Taeka OTSUKA Shigenori MIYOSHI Takemasa
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2019-066, (Released:2019-09-22)
被引用文献数
1

This paper proposes a new verification metric that can evaluate location errors and shapes of rainfall areas simultaneously: the Pattern Similarity Index (PSI). Pixel-by-pixel verification methods such as the threat score and root mean squared error have difficulties in evaluating location errors and shapes of rainfall areas, and in evaluating small rainfall areas. To address these difficulties, various object-based methods have been developed. However, object-based methods tend to be complicated and computationally expensive. Therefore, PSI adopts a simpler, computationally more efficient algorithm as follows. First, bounding rectangles of individual rainfall areas are computed, and neighboring rectangles are combined so that they are treated as a single precipitation system to mimic the human recognition. Next, shape parameters are computed for each integrated bounding rectangle. For each pair of the observed and forecasted rainfall areas, the location error weighted by the differences of the shape parameters is used as the verification score. If no observed rainfall area with a similar size exists near a forecasted rainfall area, this distance- based score of the forecasted area is set to a large value. The integration method of the bounding rectangle and the precipitation threshold are the only tunable parameters in this method, and we repeat computing the verification score by varying these parameters. The best value is used as the final verification score. Idealized cases showed the ability of PSI to evaluate location errors and differences in the shape parameters. A real case with global precipitation nowcasting showed that the proposed evaluation value increased almost linearly with the forecast time, whereas the threat score and root mean squared error tended to saturate as the forecast time increases, showing a potential advantage of PSI. Comparison with another object-based method revealed the advantage of PSI in its computational efficiency while providing similar verification scores.
著者
TAKAMURA Tamio IRIE Hitoshi
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2019-059, (Released:2019-08-09)

The accurate aerosol optical thickness is indispensable for estimating the radiative forcing of aerosols in the atmosphere. Sun photometry is one of the most popular methods, which is simple and easy to use, but it should be noted that some errors due to forward scattering effect can be introduced in the observation of the direct normal irradiance. Consequently, the estimated optical thickness of aerosols can be under-estimated even if the calibration constant is correct. This possibility depends on an optical geometry of the measuring instrument as well as aerosol characteristics. This report assesses these effects by assuming several aerosol types and instrumental parameters quantitatively. Forward scattering ratio γλfwd, which is defined as a ratio of the forward scattering part to the true direct normal irradiance (Iλ), by Iλobs=Iλ(1+γλfwd), is approximately proportional to the product of the optical thickness (τλaer) and the single scattering albedo (ωλ) of aerosols and the relative air mass (m), γλfwd≈ελωλτλaerm. The coefficient ελ is a proportional constant which is dependent on the opening angle of the instrument as well as the optical characteristics of aerosols. The variation of ελ is tabulated for several aerosol types and opening angles. Then the error for the estimate of τλaer can be approximately expressed by Δτλ≈ -ελωλτλaer.
著者
Kenichi Kusunoki Ken-ichiro Arai Hanako Y. Inoue Chusei Fujiwara
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.234-237, 2019 (Released:2019-11-15)
参考文献数
23

On 11 December 2012, a wind gust caused an F0-intensity wind damage in the Shonai area, Yamagata Prefecture, Japan. This paper provides an overview of an anticyclonic misocyclone (i.e., anticyclonic circulation in the Doppler velocity) related to a wind gust from X-band Doppler radar data. The anticyclonic misocyclone was embedded within a cell with a spiral echo diameter of approximately 3-4 km. The misocyclone over the Sea of Japan moved southeastward at a speed of 11 m s−1, made landfall, and passed over the damaged area; this timing is consistent with the Japan Meteorological Agency (JMA) wind damage assessment. Over the damaged area, the diameter of the misocyclone in the Doppler velocity was estimated to be smaller than 893 m, and the peak tangential wind speed and the vorticity of the vortex were estimated to be at least 8 m s−1 and −3.6 × 10−2 sec−1, respectively. This study discusses various possible explanations for the relationship between the misocyclone and wind gust and provides a first overview of a wintertime anticyclonic misocyclone associated with a surface wind gust on the coast of the Sea of Japan and may provide useful insights to the understanding of wintertime vortices.
著者
Hanako Y. Inoue Kenichi Kusunoki Toru Adachi Chusei Fujiwara Naoki Ishitsu Ken-ichiro Arai
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.228-233, 2019 (Released:2019-11-12)
参考文献数
24

The characteristics and finescale evolution of misovortices within a snowband were examined using low-level high-resolution single- and dual-Doppler radar analysis. From 02:00 to 06:00 JST on 17 January 2017, many misovortices developed within three snowbands in the Japan Sea coastal region. The vortices developed along the shear line between the offshore north-northwesterly and the coastal northeasterly. As discussed in several previous studies of misovortices along airmass boundaries, horizontal shearing instability was considered to be a possible mechanism responsible for misovortex formation. A detailed investigation was performed on the most distinct snowband and misovortices embedded within it. Dual-Doppler analysis revealed a detailed behavior of vortex during merger, such as the morphological change from quasi-circular to elliptical shape, and the counterclockwise rotation which caused high-amplitude inflection of the shear line in less than 10 minutes. During the decay stage, the vortices weakened along with weakening convergence. The results suggest that evolution of the misovortex appears to have been closely tied to the low-level convergence within the vortex.
著者
Kazuo Saito
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.222-227, 2019 (Released:2019-11-12)
参考文献数
27
被引用文献数
8

It is well known that northward winds are often observed at southern coastal areas of Japan when a developed tropical cyclone is located off the south coast of Japan. These northward winds have been frequently referred to the northward emission of warm and humid air from the typhoon which cause pre-typhoon rainfalls, but their mechanism has not been clarified. In this paper, we show that the northward wind can be explained by the ageostrophic wind components dynamically induced by acceleration vector round the tropical cyclone. On 7 October 2009, when a developed typhoon (T0918 Melor) approached Japan, distinct northward winds were observed at aerological observations over western Japan. Using numerical simulations with the Japan Meteorological Agency nonhydrostatic model, we reproduced the observed northward wind and their mechanism were examined by numerical experiments. The origin of the northward winds is explained by the ageostrophic winds dynamically induced by the acceleration vectors. When a typhoon approaches a baroclinic zone from south, northeastward ageostrophic winds are induced by southeastward acceleration vectors. Other possible causes (diabatic heating and orographic effect) are examined by sensitivity experiments. Diabatic heating by moist process acts to enhance the ageostrophic winds but the role is not primary. Orography has little effect on the observed ageostrophic wind. Non-axisymmetric features of the upper level divergence flow of a tropical cyclone near a baroclinic zone can also be elucidated by the similar mechanism of the ageostrophic winds.
著者
Abd. Rahman As-syakur Keiji Imaoka Kakuji Ogawara Manabu D. Yamanaka Tasuku Tanaka Yuji Kashino I Wayan Nuarsa Takahiro Osawa
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.216-221, 2019 (Released:2019-11-08)
参考文献数
28
被引用文献数
7

We analyzed 3-hourly Tropical Rainfall Measuring Mission multi-satellite analysis (TRMM 3B42) version-7 data for the 17-year period 1998-2014 to investigate seasonal and geographic characteristics of the diurnal rainfall cycle (DRC) over Sumatera, Indonesia. Dividing Sumatera into north, central, and south regions approximately perpendicular to the west coast, we point out for the first time early-afternoon initiation of daily rainfall not only in the Barisan Mountains but also in the east-coastal small islands (ECSIs) such as Bangka and Belitung. Westward and eastward migrations of rainfall areas from the Barisan Mountains are varied with seasons and regions, with the most remarkable being westward during September-October-November (SON) in the central region and the least remarkable occurring during June-July-August (JJA) in the southern region. In the central region, the DRC reaches a distance of ∼700 km off the west coast during SON and of only 200 km during March-April-May (MAM). The other westward migrations from the ECSIs in the central and southern regions (except for JJA) have been confirmed by 5-year hourly Multi-functional Transport Satellite-1R (MTSAT-1R) cloud-top data. The results shown in this paper suggest that the rainfall distribution with respect to coastal distance, varying geographically and seasonally.
著者
Yan Nie Lijuan Li Yanli Tang Bin Wang
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.211-215, 2019 (Released:2019-10-29)
参考文献数
31
被引用文献数
11

External forcings among the different phases of the Coupled Model Intercomparison Project (CMIP) vary considerably, but their impacts have not been extensively investigated yet. This study compares the impacts of CMIP5 and CMIP6 forcings on model stability and the 20th-century global warming and El-Niño Southern Oscillation (ENSO) based on the Pre-Industrial control (PI-control) and historical runs of the Flexible Global Ocean–Atmosphere–Land System Model: Grid-point Version 2 (FGOALS-g2). Results indicate that CMIP6 forcings result in a larger climate drift and a lower climatological global average surface temperature (GAST) than those of CMIP5 in PI-control runs. In historical runs, stronger 20th-century warming trends occur during the periods 1910-1940 and 1970-2005 using CMIP6 forcings, which are closer to the HadCRUT than those of the CMIP5 forcings simulation. A stronger spurious warming trend in the CMIP6 results in an evolution of GAST that is less consistent with the HadCRUT dataset than that in the CMIP5 during 1940-1970. Among all forcings, GHGs and aerosol forcings play the dominant roles in differences in GAST, particularly in the Northern Hemisphere. In both the PI-control and historical runs, a larger ENSO amplitude and smaller seasonality are simulated in CMIP6 than in CMIP5.
著者
Hidekazu Matsueda Rebecca R. Buchholz Kentaro Ishijima Helen M. Worden Dorit Hammerling Toshinobu Machida
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.205-210, 2019 (Released:2019-09-27)
参考文献数
36
被引用文献数
6

We analyzed temporal variations of carbon monoxide (CO) in the upper troposphere from 30°N to 30°S observed using instruments aboard commercial airliner flights between Japan and Australia over the period 1993-2016. Here we focused on the CO variations in the Southern Hemisphere (SH) that showed a unique seasonal cycle with an increased CO around October-November every year. The seasonal CO peaks in the SH showed significant interannual variability (IAV), and are notably enhanced in strong El Niño years, especially 1997. The CO enhancements are proportionally associated with CO emissions from Indonesian fires, when compared to the Global Fire Emissions Database (GFED). The IAV of the CO peak anomalies relative to the mean seasonal cycle was assessed by a statistical regression model that uses a combination of multiple climate indices and their interaction terms. We found that over 80% of the CO IAV observed in the upper troposphere could be explained by the model. The largest anomaly in 1997 showed a different CO-climate relationship than the other periods, which could be due to amplification during synchronized climate modes, or include additional influence from other factors such as human activities.