著者
小池 都 村上 泉子 丹野 修
出版者
日本香粧品学会
雑誌
日本香粧品学会誌 (ISSN:18802532)
巻号頁・発行日
vol.37, no.2, pp.81-89, 2013-06-30 (Released:2014-07-16)
参考文献数
27
被引用文献数
1

We determined skin properties and morphological characteristics in the neck and décolleté in 90 Japanese women aged 22–76 years old, then analyzed age-related changes and differences in those areas as compared to skin of the face. Our results showed that skin in the décolleté had higher water content, as well as lower TEWL and sebum levels as compared to the cheek, with the same tendency seen in the neck, e.g., the sebum-water balance in the skin of the neck and décolleté areas was greatly different from that in the skin of the cheek. Furthermore, in subjects aged 40 years and older, sebum levels and skin color lightness were significantly decreased in the neck and décolleté areas, while wrinkle morphology was also markedly different, suggesting that these areas showed marked alterations in women in their 40s, which may be attributed to the effects of ultraviolet (UV) to change skin elasticity and color. The shape of the neck and lower jaw area was also markedly changed in subjects aged 60 years older, indicating that subcutaneous tissue might exert varying age-dependent effects on lower jaw morphology.
著者
増田 一男 宮岡 礼子 小島 定吉 岡 睦雄 森田 茂之 丹野 修吉
出版者
東京工業大学
雑誌
一般研究(C)
巻号頁・発行日
1992

多様体の葉層構造の葉の法方向に関しては色々な不変量が定義されて多くの研究があるが、葉の接方向に関する研究は余り多くない。接方向にアファイン構造を持つ場合には各葉がアファイン多様体になり、その上のアフィン関数が考えられるが、最も基本的なトーラスの場合、アフィン関数はコンパクト葉の上の値で完全に決定され、関数空間の次元がホロノミーによって決まる状況がほぼ完全に解明された。シンプレクティク多様体のラグランジ部分多様体による葉層構造の各葉は接方向にアフィンであり、任意のアフィン多様体はこのようにして実現される。又、コンタクト多様体のルジャンドル部分多様体による葉層構造の各葉は接方向に射影構造を持ち、任意の射影多様体はこのようにして実現される。これらのことが同次座標を使うことにより平行して見通しよく示された。コンタクト多様体の典型的な例であるリーマン多様体の単位接束はCR構造を持つがこれのある(1,3)型のゲージ不変量が消えるための必要十分条件は、リーマン多様体が定曲率-1であることが示された。葉層構造の不変量として最初に発見されたGodbillon-Vey不変量は位相不変が、又G-Vが0なら葉層構造が0に同境かという2大問題はC^<1+α>、P.L.葉層にまでGVを拡張し、かなり研究が進展した。一次元葉層構造と考えられる力学系に関しては、平面の位相同型写像が力学系(=流れ)にうめ込めるかという問題が、写像の非ハウスドルフ集合と関連して研究された。又3次元多様体上の法方向にアフィンである流れで完備であるものについて古典的なり一群を用いて多くの例を構成し、ほぼ分類が完成された。
著者
二木 昭人 服部 俊昭 辻 元 石井 志保子 黒川 信重 丹野 修吉
出版者
東京工業大学
雑誌
基盤研究(B)
巻号頁・発行日
1996

二木は、ケーラー・アインシュタイン計量の存在、Mumfordの意味での代数多様体の安定性および二木指標の非自明性との関連について研究した。丹野は、E^<m+1>の中の完備、向きづけ可能で、安定な極小超曲面上では、0≦p≦mについてL^2調和形式は0に限るのではないかという予想について、m≦4では正しいことを証明した。黒川は著書『数論1』を著した。石井は、任意の非退化超曲面特異点の標準モデル、極小モデル、対数的標準モデルを構成した。またコンパクトトーリック多様体の因子の極小モデルを構成した。また16年前に出された標準特異点に関するリ-ドの予想の反例を構成した。辻は、特異計量を用いて標準環の構造を解析した。特に一般型の代数多様体のモジュライ空間の構成を考察した。服部はリーマン面の射影構造が導くホロノミー群が離散群になる場合を考察し、それが安定な場合には擬Fuchs群しか現れないことを示した。
著者
森田 茂之 二木 昭人 藤原 大輔 藤田 隆夫 岡 睦雄 丹野 修吉
出版者
東京工業大学
雑誌
一般研究(C)
巻号頁・発行日
1990

研究代表者、各研究分担者のそれぞれの分野における、当研究課題に関連する研究計画にもとづいて、研究を進めた。その結果、当初の目標を完全に遂行し、更にこれからの発展に関する展望を込めた、大きな成果をあげることができた。以下に3の概要を簡単に記述する。研究代表者(森田)は、ここ数年来研究している、向きづけ可能閉曲面をファイバ-とするファイバ-バンドル(曲面バンドル)の特性類の理論を更に発展させ、主要な応用として、リ-マン面のモジュライ空間のトポロジ-に関するいくつかの結果と、曲面の写像類群の構造と3次元多様体の不変量との深い関連を示す定理とを得た。特に写像類群の重要な部分群であるTorelli群と、ホモロジ-3球面のCasson不変量と関連を与える決定的結果を得た。次に、各研究分担者の成果のうちおもなものを列記する。丹野は三角関数の積を変数の巾ぐ割った形の関数の無限巳間での積分に関して新しい公式を求めた。またCR構造、接触構造についても、微分幾何的研究を発展させた。岡は非退化完全交差系に関する一連の研究を推し進め、自然な滑層分割の存在、生ゼ-タ関数を与える公式等を得た。藤田は弱異点のあるDel Pezzo多様体の分類をほぼ完成した。また一般ファイバ-がDel Pezzo多様体であるような偏極多様体の一次元変形栓に出現し得る特異ファイバ-の型を分類した。藤原はFeynmanの経路積分をソボレフ空間上の広義積分として収束を証明した。道具として停留位相法における誤差の大きさを、空間次元に無関係に評価出来るという新しい結果が使われる。また二木はKa^^¨hlerーEinstein計量の存在に関する二木不変量のeta不変量による解釈を与えた。