著者
森田 茂之
出版者
一般社団法人 日本数学会
雑誌
数学 (ISSN:0039470X)
巻号頁・発行日
vol.43, no.3, pp.232-247, 1991-08-26 (Released:2008-12-25)
参考文献数
53
著者
増田 一男 宮岡 礼子 小島 定吉 岡 睦雄 森田 茂之 丹野 修吉
出版者
東京工業大学
雑誌
一般研究(C)
巻号頁・発行日
1992

多様体の葉層構造の葉の法方向に関しては色々な不変量が定義されて多くの研究があるが、葉の接方向に関する研究は余り多くない。接方向にアファイン構造を持つ場合には各葉がアファイン多様体になり、その上のアフィン関数が考えられるが、最も基本的なトーラスの場合、アフィン関数はコンパクト葉の上の値で完全に決定され、関数空間の次元がホロノミーによって決まる状況がほぼ完全に解明された。シンプレクティク多様体のラグランジ部分多様体による葉層構造の各葉は接方向にアフィンであり、任意のアフィン多様体はこのようにして実現される。又、コンタクト多様体のルジャンドル部分多様体による葉層構造の各葉は接方向に射影構造を持ち、任意の射影多様体はこのようにして実現される。これらのことが同次座標を使うことにより平行して見通しよく示された。コンタクト多様体の典型的な例であるリーマン多様体の単位接束はCR構造を持つがこれのある(1,3)型のゲージ不変量が消えるための必要十分条件は、リーマン多様体が定曲率-1であることが示された。葉層構造の不変量として最初に発見されたGodbillon-Vey不変量は位相不変が、又G-Vが0なら葉層構造が0に同境かという2大問題はC^<1+α>、P.L.葉層にまでGVを拡張し、かなり研究が進展した。一次元葉層構造と考えられる力学系に関しては、平面の位相同型写像が力学系(=流れ)にうめ込めるかという問題が、写像の非ハウスドルフ集合と関連して研究された。又3次元多様体上の法方向にアフィンである流れで完備であるものについて古典的なり一群を用いて多くの例を構成し、ほぼ分類が完成された。
著者
森田 茂之 二木 昭人 藤原 大輔 藤田 隆夫 岡 睦雄 丹野 修吉
出版者
東京工業大学
雑誌
一般研究(C)
巻号頁・発行日
1990

研究代表者、各研究分担者のそれぞれの分野における、当研究課題に関連する研究計画にもとづいて、研究を進めた。その結果、当初の目標を完全に遂行し、更にこれからの発展に関する展望を込めた、大きな成果をあげることができた。以下に3の概要を簡単に記述する。研究代表者(森田)は、ここ数年来研究している、向きづけ可能閉曲面をファイバ-とするファイバ-バンドル(曲面バンドル)の特性類の理論を更に発展させ、主要な応用として、リ-マン面のモジュライ空間のトポロジ-に関するいくつかの結果と、曲面の写像類群の構造と3次元多様体の不変量との深い関連を示す定理とを得た。特に写像類群の重要な部分群であるTorelli群と、ホモロジ-3球面のCasson不変量と関連を与える決定的結果を得た。次に、各研究分担者の成果のうちおもなものを列記する。丹野は三角関数の積を変数の巾ぐ割った形の関数の無限巳間での積分に関して新しい公式を求めた。またCR構造、接触構造についても、微分幾何的研究を発展させた。岡は非退化完全交差系に関する一連の研究を推し進め、自然な滑層分割の存在、生ゼ-タ関数を与える公式等を得た。藤田は弱異点のあるDel Pezzo多様体の分類をほぼ完成した。また一般ファイバ-がDel Pezzo多様体であるような偏極多様体の一次元変形栓に出現し得る特異ファイバ-の型を分類した。藤原はFeynmanの経路積分をソボレフ空間上の広義積分として収束を証明した。道具として停留位相法における誤差の大きさを、空間次元に無関係に評価出来るという新しい結果が使われる。また二木はKa^^¨hlerーEinstein計量の存在に関する二木不変量のeta不変量による解釈を与えた。
著者
松本 幸夫 渡辺 正 河内 明夫 松本 堯生 加藤 十吉 森田 茂之 西田 吾郎
出版者
東京大学
雑誌
総合研究(A)
巻号頁・発行日
1988

本研究の性格上、研究成果は多岐にわたるが、ここではその全般的特徴を述べ、特記すべき事項を挙げる。全般的には、低次元多様体に関連する分野で特に活発な研究が行なわれたことが目立つ。研究計画で述べた数理物理学と低次元多様体論の関連はその後も深く追求された。個別的な事項を掲げる、C^*環の研究の中で発見された結び目の新しい多項式(Jones多項式等)の位相幾何的統制力は河内の「イミテ-ション理論」によりかなり明らかになった。ゲ-ジ理論と4次元多様体論の共通の基盤であるインスタントンのモジュライ空間は、計量構造(松本堯生を中心とする広大グル-プ)と位相構造(東大グル-プ)が共に深く研究された。最新の成果として、2次元共形場理論に由来する新しい3次元多様体の不変量の発見(河野)が著しい。この不変量は、曲面の写像類群と本質的に関係するが、写像類群のコホモロジ-は、森田茂之の研究によって、その構造がかなり明らかになった。とくに、写像類群の特殊な部分群(Torelli群)とCasson不変量の関係の解明は深い成果と言える。ゲ-ジ理論の3次元版と言うべきFloerホモロジ-群の計算が吉田朋好によって精力的に遂行され、シンプレクティック幾何のマスロフ指数との関連が発見された。3次元双曲幾何の分野では、小島、宮本による測地境界を持つ3次元双曲多様体の最小体積の決定は特筆に値する。低次元多様体論以外の分野では、幾何構造の入った葉層構造(稲葉・松元)、Godvillon-Vey類(坪井)、同変sコボルディズム論(川久保)、複素空間への代数的群作用に関する上林予想(枡田等)、完全交差特異点(岡睦雄)、Approximate Shape理論(渡辺)がある。昭和63年〜平成元年に20余の研究集会と2つの合同シンポジウム(静岡大学・福島大学)を開催した。結論として、本研究は当初の目標を十分に達成し、更に新たな研究課題を見出したと言える。
著者
森田 茂之 中村 博昭 河澄 響也 古田 幹雄 村上 順 秋田 利之 森吉 仁志
出版者
東京大学
雑誌
基盤研究(B)
巻号頁・発行日
2001

本研究では,曲面の写像類群とリーマン面のモジュライ空間の構造の解明を中心課題とし,それに密接に関連する種々の問題についての研究を行った.具体的には,写像類群のコホモロジー群の研究,Floerホモトピー型の理論の展開,3次元多様体のゲージ理論に基づく位相不変量の研究,写像類群の調和的Magnus展開の理論の建設,Grothendieck-Teichm\"uller群の構造の研究,3次元多様体論における体積予想の研究,3・4次元における非可換幾何学の展開,写像類群の有限部分群と特性類の関係に関する研究,写像類群のJohes表現の研究,写像類群と4次元多様体論との関連,等である.このように代表者および各分担者はそれぞれのテーマを追究する一方で,相互啓発により一段高い観点からの研究を目指した.その中から,例えば写像類群の幾何学とシンプレティック幾何学との結びつきや,写像類群と自由群の外部自己同型群の構造の類似点および相違点の解明等の新しい研究の方向も見えてきた.