著者
遠藤 広晴 伊積 康彦 林 伸明
出版者
人間-生活環境系学会
雑誌
人間-生活環境系シンポジウム報告集
巻号頁・発行日
vol.37, pp.187-190, 2013-11-22

夏季の通勤列車内の温熱環境の実態を把握するため,営業運転中の通勤列車内の温湿度測定,および主観評価を行った。駅間走行中の車内には水平方向に平均で3℃,最大で6℃程度の温度差が生じており,車内位置により温熱快適性が異なる可能性が示唆された。車内各位置の上下温度差は4℃以下であり,温熱快適性に大きな影響を及ぼすほどではなかった。温湿度変化速度は±1.0℃/min, ±6.0%/min程度まで観測され,非定常性の高い温熱環境であることを確認した。駅停車中のドア開時の温度上昇幅は,ドア直近では平均2.7℃,その他の位置では平均1.5℃程度であった。主観評価結果と評価時の温湿度測定値を基に,PMV,PPDを算出し,本調査での不快申告率,不満足申告率との比較を行った。PPDがPMV=0で最小値となるのに対し,不快申告率,不満足申告率はPMV=-0.5付近で最小値をとり,季節性が温熱快適性に影響を及ぼしていることが示唆された。
著者
原口 圭 佐藤 淳 林 篤 武居 泰 伊積 康彦
出版者
日本建築学会
雑誌
日本建築学会環境系論文集 (ISSN:13480685)
巻号頁・発行日
vol.83, no.744, pp.159-169, 2018 (Released:2018-02-28)
参考文献数
19
被引用文献数
1 1

A purpose of this study is to simply evaluate pressure variation in stations having all covering roof. Round a running train, pressure field occurs. As this pressure field moves with the train, pressure variation is observed in the neighborhood of the passage train. We measured at stations having all covering roof to grasp the characteristic of the pressure variation. As a result, we confirmed that pressure variation at the time of train nose passage was bigger than the train tail passage, opening ratio had linear correlations with pressure coefficient maximum value in the specific station and when cross-sectional area of station became small the pressure variation grew big. In addition, we confirmed that the pressure variation was proportional to square of the train speed and we could apply the evaluation expression same as open area. In the second place, by the measurement at opposite sides in stations having all covering roof, we tried to divide the pressure variation into one-dimensional component which is same in a section and three-dimensional component which depends on the distance from a train. As a result, we confirmed that we could divide into the both by confirmation of the waveform. And when we evaluated the pressure variation maximum value, we confirmed that one-dimensional component was dominant and the influence became small so that opening ratio became big. As we evaluated the pressure variation maximum value by the simple addition, we tried to construct the evaluation expression consisting of the addition of the one-dimensional component maximum value times α and three-dimensional component maximum value times β. On the one-dimensional component maximum value, we confirmed that opening ratio had linear corrections with the pressure coefficient maximum value /R (2-R) of the one-dimensional component. We led an evaluation expression from the relations and confirmed that we could evaluate it with not depending on the train classification, an error of the 10 percent or so. We supposed that the three-dimensional component maximum value was inversely proportional to square of the distance from the train center, and we led an evaluation expression every train classification. We confirmed that the influence of opening ratio was small and we could evaluate it with an error of the 20 percent or so. As a result, we suggested an evaluation expression of pressure variation maximum value in stations having all covering roof which is the addition of the one-dimensional component and three-dimensional component. And by the expression it was confirmed that we could predict the pressure variation of small sectional stations with 10 percent or so, and that of large sectional stations with 20 percent or so.
著者
岩瀬 昭雄 伊積 康彦
出版者
一般社団法人日本音響学会
雑誌
日本音響学会誌 (ISSN:03694232)
巻号頁・発行日
vol.52, no.6, pp.411-419, 1996-06-01
被引用文献数
20

音響管を用いた多孔質材料の伝搬定数計測では, 試料を剛壁に密着状態と背後に1/4波長の空気層を設けた状態での2回のインピーダンス測定を行う方法が代表するように, 試料背後の空気層確保が必須条件で, 柔らかな材料の形態を変えないで上記2条件を実現する困難な課題に大きな努力が注がれてきた。本研究ではこの方向とは考えを異にした背後空気層を全く不要とする, 試料前後の伝達関数分析のみによる極めて単純な計測法を考案し, 有効性を検証した。その検証過程で, 多孔質試料には音響管壁で支持される共振振動が生じて大きな計測誤差を生むことが初めて明らかにされ, その回避が音響管を用いた計測法に共通する新たな問題として提起された。