著者
須藤 茂 猪股 隆行 佐々木 寿 向山 栄
出版者
国立研究開発法人 産業技術総合研究所 地質調査総合センター
雑誌
地質調査研究報告 (ISSN:13464272)
巻号頁・発行日
vol.58, no.9-10, pp.261-321, 2007-12-14 (Released:2014-05-15)
参考文献数
129
被引用文献数
19 17

降下火山灰は,少量であっても,産業活動の中心である大都市も含めた広範囲にわたり大きな災害をもたらす可能性があるが,これまで,その総括的評価はなされていなかった.本研究では,わが国の降下火山灰の分布に関する既存の公表資料を整理し,補間等を行うことによって,火山灰の等層厚線図を完成させ,火山灰名,噴出火山名,噴出時代,文献等を整理し,ディジタイズ化及びデータベース作成を行った.収録した火山灰のユニットは,551 であり,作成されたデータベースから,国土数値情報の第 3 次メッシュ,すなわち約 1 km メッシュごとの各火山灰の名前,噴出年代,層厚などの情報が引き出せるようにした.本研究で作成した降下火山灰のデータベースは,国土数値情報に基ことが容易である.今後のスムーズな情報の提供を,電子情報等を通じて行う予定である.
著者
河野 芳輝 石渡 明 大村 明雄 古本 宗充 守屋 以智雄 寒川 旭 向山 栄 西村 智博 中居 康洋 粟 真人
出版者
一般社団法人 日本地質学会
雑誌
地質学雑誌 (ISSN:00167630)
巻号頁・発行日
vol.103, no.10, pp.XXXI-XXXII, 1997 (Released:2010-12-14)
参考文献数
4

平成8年度科学技術庁交付金を受けて石川県が行っている森本断層調査事業の一環として, 同断層に沿う金沢市梅田町の梅田B遺跡 (主に弥生時代~古墳時代) でトレンチ調査が行われ, 活断層の露頭が出現した. 森本断層(三崎, 1980)は, 金沢市北方の海岸平野と丘陵を境する地形境界付近に推定されている, 長さ13kmの活断層である(第1図). 丘陵末端部の洪積層は海側へ40°~70°傾く撓曲構造をなしており(第2図), 1799年の寛政金沢地震がこの断層の活動によるとする指摘もある (寒川, 1986)が, 断層露頭は未発見だった. 新しい道路取り付けのため従来から行われていた遺跡の発掘調査で, 弥生時代の遺構面と水路が, 不自然に海側が高くなっているという指摘があり, 断層運動による撓曲の可能性を考えてトレンチ調査を行った. 長さ8m, 深さ6mの北西方向のトレンチの壁面に, 走向N38°E, 傾斜35°NW, 鉛直落差約1.Om の低角衝上断層の露頭が出現した (第3, 4, 5図). この露頭では, 下部の, よく固結した洪積層 (卯辰山層) がほぼ断層と同じ走向で海側へ40°傾斜し, 露頭上部の水平な未固結の沖積層 (厚さ4m程度) がそれを傾斜不整合で覆っている. 断層運動によって, 洪積層は剛体的に破断して断層に沿って変位しているが, 沖積層は流動変形して下部では押し被せ褶曲をなし, 上へ向かって次第に緩やかな撓曲へ移り変わっている. これらの構造は1回の断層運動で生じたもので, 変位の累積性はなく, 水平変位もほとんど見られない. この断層は海側が上昇した逆断層であり, 丘陵を隆起させてきた森本断層本体の運動とは逆センスなので, 主断層の活動に伴った層面すべり断層(吉岡, 1989)と思われる.トレンチの南北両面に見られる沖積層最上部のシルト層(炭質物の14C年代は2740±50YB. P. )はこの撓曲に参加して南東へ傾き, トレンチ北面では更に上位の弥生時代の腐植土層(同前, 2060±70Y. B, P. )もこの撓曲に参加しているように見える(第6図).上述のように, 断層を横切るトレンチ外の弥生時代の溝の遺構は変位しているが, トレンチの東半部に断面が現れているそれより新しい弥生時代の溝の遺構(同前, 1930±60Y. B. P. )は, 断層運動によって形成された擁曲崖の麓に沿って掘られた可能性がある. また, トレンチ西半部に断面が現れている古墳時代の溝の遺構(同前, 1410±50Y. B. P. )には変位が認められないことから, この断層運動(M6. 7以上の地震に相当)は約2000年前(±500年程度の不確実性があり得る)に発生した可能性が高い. 沖積層基底の炭質物の14年代は4430±60Y.B.P. なので, この断層はそれから現在までの間に1回だけ動いたことになる.周辺地域での従来の地質踏査, ボーリング調査および弾性波探査によると, 卯辰山層基底の高度は森本断層の両側で600mほど食い違っている. この変位が最近80万年間で起きたと仮定すると, 森本断層の平均変位速度はおよそ0.75m/1000年となる. 上述のように, 今回発見されたのは副次的な層面すべり断層と考えられ, 主断層のずれの量はもっと大きかった可能性が高い. 主断層が1mを越す変位を生じたとすると, 森本断層だけではなく, 南方延長の野町断層や富樫断層なども同時に動いた可能性があり, 今後の研究課題である.森本断層は, これまで確実度II(推定), 活動度B(0.1-1m/1000年)とされていた(活断層研究会, 1991)が, 今回の発見によって活断層であることが確実になり, 約2000年前にかなりの規模の地震を起こしたことがはっきりした. また, 今回発見された露頭は, 堆積物の固結の程度によって変形の様子が全く異なることを如実に示しており, 平坦な沖積平野の地下数mにも, このような活断層が隠れていることを証明した点で意義深い.
著者
向山 栄 佐々木 寿
出版者
日本地図学会
雑誌
地図 (ISSN:00094897)
巻号頁・発行日
vol.45, no.1, pp.47-56, 2007-03-31 (Released:2011-07-19)
参考文献数
13
著者
太田 陽子 小田切 聡子 佐々木 寿 向山 栄
出版者
公益社団法人 日本地震学会
雑誌
地震 第2輯 (ISSN:00371114)
巻号頁・発行日
vol.58, no.4, pp.385-399, 2006-03-31 (Released:2010-03-11)
参考文献数
19

A flight of late Holocene marine terrace fringes the central area of Puget Sound, and records uplift over an extensive area above the Seattle fault zone. The E-W trending blind thrust fault zone is a source of major seismic hazards in the Seattle metropolitan area. Gravity and seismic reflection surveys indicate a south- dipping fault plane, but its exact location and timing of past activities were unknown. LiDAR topographic mapping of the Puget lowland revealed several fault scarps on the glacial landscape hidden under the dense forest. We observed the fault, offset on the Holocene marine terrace surface and measured the former shoreline height at 97 locations using LiDAR DEM to map terrace deformation patterns and their relation to the faults. Studied areas include 1) Alki Point, 2) the southern part of Bainbridge Island, and 3) the southeastern Kitsap Peninsula near Port Orchard and southwestern Bainbridge Island. The height of the former shorelines marked by the Holocene terrace changes from ca. 10.7 to 7.3m a. s. l in the west to 12.2 to 10.1m in the east of the Toe Jam Hill fault, and 10.6 to 7.8m in the west to 9.7 to 7.9m in the east of the Waterman Point fault. These changes indicate differential uplift of the terrace surfaces across the faults. There are two newly identified faults in this study. One is the Point Glover fault that is marked by a scarp in the LiDAR map and associated 2m offset of the terrace surface. The other is the South Beach Point fault inferred by the northward tilt of the terrace surface. Because these faults strike E-W, parallel to the main Seattle Fault on its south side, and have south-facing scarps and north-dipping fault planes, they are probably back-thrsuts to the main Seattle Fault. The width of the backthrust zone is at least 4km. The age of the terraces approximately coincides with the most recent faulting event on the surface fault (at least for Toe Jam Hill Fault, ca. 1000yr BP), thus the differential uplift probably occurred simultaneously with fault movement. Although the surface backthrust scarps are less than a few kilometers long and vertical offset is 2-3m, the total amount of uplift reaches about 12m. Subtracting the effect of the vertical displacement and the amount of northward tilting, the uplift of several meters still remains on the Seattle fault zone of over about 4km wide. This broad zone of uplift is not due to the slip on the subsidiary backthrusts, but probably due to the blind thrust of the main Seattle fault. We infer that at least some of the coastal deformation is caused by broad surface upwarping above the Seattle fault and that the upwarping occurred at ca. 1000yrs BP, associated with ruptures on at least three of the backthrusts. The uplift and faulting may represent the largest earthquake in the Puget Sound area during the late Holocene.