著者
名和 範人 鈴木 貴 小川 知之 石毛 和弘
出版者
大阪大学
雑誌
基盤研究(B)
巻号頁・発行日
2002

名和と石毛が運営メンバーに名を連ねる『語ろう「数理解析」』(http://www.gifu-u.ac.jp/~tisiwata/seminar/ma_seminar.html)を通して,様々な分野の研究者との議論の場を設ける事ができた。この活動などを通して、研究分担者各員は、各々の研究分野で成果をあげ、様々な研究集会など、複数の講演機会や海外への渡航機会も得て、情報交換がより密になされるようになった。名和は、擬共型不変な非線形シュレディンガー方程式の爆発解に対して、その爆発速度と漸近挙動との間の関係性について、ひとつの結果を得る事ができた。これにより、次のステップとして、本格的にネルソン過程と呼ばれる解の背後にある確率過程と爆発速度との関係の追求に移る事ができる。また、微分型非線形シュレディンガー方程式の爆発解に対しても、漸近形に対しては、部分的に同様の結果を得た。さらに、これまでに開発した技術が、超伝導の理論に現れるような、非線形シュレディンガー方程式系の解析にも有効である事を見抜き、古典場ではあるが、クーパー対の生成とも言うべき性質を解が持ち得る事を示した。石毛は、拡散係数が大きな半線形熱方程式の爆発解の爆発集合や漸近形に関する結果や、球の外部領域における線形熱方程式の解の最大点挙動および解の微分の無限遠方での減衰評価を得た。鈴木は、自己双対ゲージ模型におけるある種の自己組織化現象や,走化性方程式系の爆発問題に関して興味深い結果を得た。小川は、自発的パターン形成のモデルである、スイフト=ホッヘンバーグ方程式や,ある電気化学系のモデル方程式などの解に現れる時空パターンについて,力学系や分岐理論を用いた解析を行った。これらの解析の一部は、すでにシュレディンガー方程式の解の解析と精神を同じくしている部分もあり、今後のさらなる共振的な発展が期待される。
著者
平岡 裕章 小川 知之 Konstantin Mischaikow
出版者
一般社団法人 日本応用数理学会
雑誌
日本応用数理学会論文誌 (ISSN:24240982)
巻号頁・発行日
vol.13, no.2, pp.191-211, 2003-06-25 (Released:2017-04-08)
参考文献数
15

This paper presents a numerical verification method for global bifurcation branches of the stationary solutions to dissipative partial differential equations. The key idea is combining verification method based on the Conley Index Theory with a branch chasing algorithm. In this paper, the verification algorithm is described in detail by taking the Swift-Hohenberg equation as an example. Some of the rigorous numerical results are also shown.
著者
小川 知之 亀高 惟倫 永井 敦 小川 知之
出版者
大阪大学
雑誌
萌芽研究
巻号頁・発行日
2002

本研究では工学に登場する非整数階微分方程式の解析およびその差分化を行った。また高階微分方程式の境界値問題のグリーン関数についてソボレフ不等式の最良定数計算への応用を中心に調べ、さらにパターン形成の問題と関連して分岐解析法を整備した。得られた結果は以下の通りである。1.流体力学に登場する非整数階微分方程式であるチェン方程式において、ピューズー展開法を用いてミッタークレフラー関数解を求めた。またこれらの初期値問題は、ミッタークレフラー関数の漸近挙動を用いることにより、(非整数階微分を含まない)2階および4階常微分方程式の境界値問題で近似されることを証明した。2.地球内部のマントルの運動に関連して,球面上でのラプラス作用素の有限要素法による差分化を行い、反応拡散系でのパターン形成の数値シュミレーションを行った.この問題はレーリー・ベナール対流のパターン形成などとも関連し,分岐理論による解析法を整備した.球面上に現れたパターンの球面調和関数による分岐解析などは今後の課題である.2.弾性理論に登場する4階常微分方程式の境界値問題のグリーン関数の区間長依存性を調べた。その結果、4階特有の興味深い現象が現れることを発見、解析的に証明した。同時に2M階常微分方程式のグリーン関数があるヒルベルト空間の再生核であることを証明し、この結果をソボレフ不等式の最良定数計算に応用した。
著者
桑村 雅隆 小川 知之
出版者
神戸大学
雑誌
基盤研究(C)
巻号頁・発行日
2010-04-01

散逸系のパターン形成に関する研究として、捕食者の休眠を伴う被食者-捕食者系とよばれる3変数の常微分方程式の解の性質を調べた。また、ショウジョウバエの中腸幹細胞系の増殖と分化の制御機構を数理モデルを通して考察した。これらの結果は、SIAM Journal on Applied Mathematics, vol.71, pp.169-179 (2011), Journal of Biological Dynamics, vol.6, pp.267-276 (2012) 等の論文で公表された。