著者
岩崎 秀樹 杉野本 勇気 大滝 孝治 岩知道 秀樹
出版者
全国数学教育学会
雑誌
数学教育学研究 : 全国数学教育学会誌 (ISSN:13412620)
巻号頁・発行日
vol.23, no.2, pp.1-13, 2017-07-31 (Released:2019-09-09)
参考文献数
36

This paper simply aims at development of teaching materials on mathematical proof based upon the theory of substantial learning environment proposed by Wittmann.  We think proof attitude and proving skills will become a core for new literacy in future days after modern times.  Mathematics education has to play a big role to realize it. So far mathematics education research, however, paid much attention to the entrance of school mathematics, i.e. arithmetic teaching in Japan.  She missed the exit of school mathematics, especially high school mathematics.  In other words the issue has not been problematized academically on secondary mathematics throughout six years although almost all of students go up to senior high school after graduation of compulsory junior level.  Oncoming mathematics education research, therefore, should focus on the exit of school mathematics from the various angles as well as the entrance.   On the other hand, senior high school mathematics still seems to be a cluster of teaching materials or collection of new instructional resources.  They are not always examined and surveyed carefully and academically.  They need to be scrutinized another angle besides mathematics because mathematics in senior high school stands at the exit of whole school mathematics.  That is to say institutional angle, cultural angle, and societal angle are inevitable.  Many students more than half launch out society with relevant citizenship after graduation of senior high school.  Moreover they must engage in lifelong learning and highly advanced information society whether they like it or not.   In this paper, “Sylvester’s  partition theorem” is chosen as a throughout proof teaching material.  She will be prepared and considered in terms of substantial learning environments as an authentic teaching material first.  She will be analyzed by means of the core of mathematics education as a scientific discipline proposed by Wittmann second.  As consequences, some methodological techniques for developing instructional materials are identified.  The techniques imply not only developmental methods in mathematics education research, but also new direction of training-system for mathematics teachers in educational practice.
著者
岡崎 正和 岩崎 秀樹 影山 和也 和田 信哉
出版者
日本教科教育学会
雑誌
日本教科教育学会誌 (ISSN:02880334)
巻号頁・発行日
vol.35, no.2, pp.53-62, 2012

本研究の一連の目的は,算数から数学への移行という視座から,子どもの図形認識が発展し,証明に繋がる端緒を明らかにすることであり,本稿では図形の論理的・関係的性質の理解の前提になると考えられる図形の動的な見方の構造を明らかにすることを目的とした。その為に,我々がこれまでに同定してきた図形の動的な見方を単純な文の組み合わせとして表し,隠喩,換喩,提喩を用いて特徴付け,それらの複合性について分析した。その結果,動的な見方は次の5つに集約されることが分かった:視覚的類似性に基づく図形の変形,図形全体の動きを点の動きで捉える,不変性を意識化する,可逆的な見方,不変性と変数性の同時的意識化。また,これらを比喩的認識の複合性の視点から分析した結果,図形の動的な見方は階層的に整理され得ることが示唆された。
著者
岩崎 秀樹 阿部 好貴 山口 武志
出版者
一般社団法人 日本科学教育学会
雑誌
科学教育研究 (ISSN:03864553)
巻号頁・発行日
vol.32, no.4, pp.366-377, 2008-12-10 (Released:2017-06-30)
参考文献数
28
被引用文献数
1

The purpose of this research is to clarify the current issues of mathematical literacy and to propose its future perspective. In this paper, we firstly look at the historical and social development of the conception of literacy from the hunter-gatherer society through the agricultural society and the industrial society to the knowledge-based or information society. Secondly, we consider the asymmetrical relationship between the society and individuals, in terms of "mathematization". The point is that mathematics becomes implicit and invisible for the people, because it is embedded in technological tools such as calculators and computers in the society. This situation can be best summarized by the following words: "an increasing mathematization of our society is complemented by an increasing demathematization of its individual members" (Keitel, 1997:2). Because we are living in this mathematized society, we should develop mathematical literacy in order to encode and decode from the real world to the mathematical one. From this perspective, we discussed the fundamental principle of an alternative curriculum for mathematical literacy. In short, it means that mathematical thinking including modeling and critical thinking is emphasized increasingly as well as mathematical contents.