著者
矢部 優 今西 和俊 西田 究
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-07-04

In order to deal with COVID-19 pandemic, social activities have been reduced around the world. Tokyo metropolitan area is no exception, where more than 30 million people live. Self-restraint was requested in various situations by local and Japanese governments, which drastically changed our life. Working from home or layoff was introduced in many companies. Shopping malls were closed. The movement of people was reduced, and economic activities stagnated.A part of noise observed by seismometers is due to human activities including transportations and machine vibrations. It is well known that seismic noise level in the daytime is higher than in the nighttime. The social activity reduction for COVID-19 is expected to decrease seismic noise in a different way from regular pattern, which would provide us a good opportunity to improve our understanding of seismic noise. Better understanding of seismic noise may also provide us a new way to monitor human activities using seismic observations. This study investigated continuous record of seismic stations in Metropolitan Seismic Observation network (MeSO-net) maintained by National Research Institute for Earth Science and Disaster Resilience (NIED). Seismic stations of MeSO-net are settled at the bottom of shallow borehole (~20 m) in the Tokyo metropolitan area. We measured hourly seismic noise level and compared its temporal changes with a timeline of COVID-19 in Tokyo metropolitan area.We observe two types of seismic noise reduction associated with different causes in MeSO-net stations. The first one is often observed in frequency bands higher than 20 Hz. This seismic noise reduction started at the beginning of March 2020. This timing corresponds to when Japanese government closed schools. As many MeSO-net stations are settled in school property, human activities there are considered to influence seismic records of MeSO-net stations strongly in a high frequency band. The second seismic noise reduction is often observed in lower frequency band between 1-20 Hz. This seismic noise reduction started on April 13th 2020. This timing corresponds to the first beginning of week after the Japanese government declared a state of emergency in Tokyo metropolitan area on April 8th 2020. Seismic noise reduction in lower frequency band is expected to be related with stagnated economic activities, such as decreasing transportations and closing buildings or factories.
著者
矢部 優 武村 俊介
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2018年大会
巻号頁・発行日
2018-03-14

Moment tensor of medium to large earthquakes and its spatiotemporal distribution provides us important information about the fault plane where the rupture occurs and kinematic process of seismic rupture on the fault. Long-period (> 10 s) seismic waveform is often used for this purpose because they are less sensitive to three-dimensional and small-scale seismic velocity heterogeneities, where our knowledge is usually incomplete. Furthermore, high frequency seismic waveforms mostly loose source information due to the seismic scattering (summarized in Sato et al., 2012). However, revealing high frequency behavior of seismic slip is also important to understand the dynamic behavior of fault rupture. This study tries to develop the method for moment tensor estimation in high frequency band using synthetic waveforms, which considers three-dimensional large- and small-scale heterogeneities. As a first step of this development, we develop grid-search focal mechanism estimation method, assuming double-couple source, by fitting seismogram envelope of target events, which is expected to be applicable for higher frequencies rather than fitting raw waveform. Before analyzing observed data, we conduct a series of synthetic tests to confirm the applicability of the method and resolutions of the estimation. The synthetic waveform is calculated using the parallel finite difference code developed by Takemura et al. (2015). The seismic source is set in Kii Peninsula as representing low frequency earthquakes. The three-dimensional background velocity structure is the JIVSM (Koketsu et al., 2012), including large-scale seismic velocity heterogeneity and topography. The small-scale random velocity heterogeneity model of Takemura et al. (2017) is embedded over the continental crust of the JIVSM. Target seismic waveform is filtered in four frequency bands (0.2-1 Hz / 1-2 Hz / 2-4 Hz / 4-8 Hz), and its focal mechanism is estimated by grid search in (strike, dip, rake) space by fitting its envelope with the synthetic stacked envelope waveforms in 5 s time windows around S-wave arrival. Our synthetic tests reveals following points. (I) When the seismic structure is correct, envelope-fitting focal mechanism estimation is well applicable up to 2-4 Hz, and could be applicable to 4-8 Hz. When one-dimensional structure of F-net (Kubo et al., 2002) is used, the estimated focal mechanism is significantly biased even in lower frequency band and not constrained in higher frequency band. There is strong trade-off in the focal mechanism estimation between strike and rake. (II) The focal mechanism estimation is highly sensitive to the assumed hypocentral location. When the assumed epicenter is 0.1º shifted from the true position in each direction, the fitting residual becomes significantly worse. When the assumed depth is shifted from the true position at the plate interface by a few kilometers, shallower shift makes fitting residual worse and biased. (III) The difference in the source time duration from 0.1 s to 1.0 s or the shape of source time function does not vary the fitting significantly. (IV) Isotropic components as non double-couple components of target events do not influence the fitting much because we use only S-wave time window. On the other hand, the contamination of a few tens percent of second double couple component affects the fitting results. (V) The analysis can be applicable to the contamination of random noise with the amplitude up to about one-thirds of signal amplitude.
著者
武村 俊介 矢部 優 江本 賢太郎
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

DONETやS-netといった海底地震計ネットワークの登場により、浅部スロー地震を含む海域の規模の小さな地震現象も多数捉えられ、基礎的な解析が進んでいる(例えば、Nakano et al., 2015, 2018; Nishikawa et al., 2019; Tanaka et al., 2019; Yabe et al., 2019)。しかし、それらの研究の多くは1次元構造による解析が主であり、海洋堆積物、海水や短波長構造の影響は考慮されておらず、不正確な震源パラメータが推定されている可能性を排除しきれない。本研究では、現実的な3次元地下構造モデルを用いて地震動シミュレーションを行い、海底地震計記録に含まれる海洋堆積物、海水や短波長構造の影響を評価し、震源パラメータ推定への影響を明らかにすることを目的とする。紀伊半島南東沖に展開されたDONET観測点を含む120x82.5x45 km3の領域を0.015 km格子で離散化し、OpenSWPC(Maeda et al., 2017)を用いて地震動シミュレーションを実施した。3次元地下構造モデルは、地震基盤以深についてKoketsu et al. (2012)を採用した。付加体内のS波速度構造モデルは、Tonegawa et al. (2017)による1次元S波構造モデルを5層モデルで近似し、各層の深さをGMT surfaceにより内挿および外挿し、3次元付加体構造モデルを構築した。最小S波速度を0.5 km/sとし、5Hz以下の地震動伝播を評価した。ここでは、浅部超低周波地震のCMT解(Takemura et al., 2019)を用い、0.2秒の三角関数を震源時間関数とすることで、浅部低周波微動の震源とした。通常の地震については、それらと近い位置で推定されたCMT解を参照し、同じ震源時間関数を仮定した。計算結果に1-5 Hzのバンドパスフィルターをかけ、RMSエンベロープを合成し、その様子を調べた。0.2秒の震源パルスであったにも関わらず、地震動シミュレーションにより得られたDONET観測点のエンベロープのS波継続時間は、震央距離10 kmを超えると10秒以上と長い。低速度な付加体にS波がトラップされたことで、継続時間が長大化したと考えられる。さらに、S波の継続時間は距離の増大に伴い増加する傾向にあり、例えばYabe et al. (2019)のように、これらのエンベロープの半値幅をそのまま震源の破壊継続時間と解釈すると過大評価となる場合がある。特に浅部低周波微動の場合、3次元不均質構造を考慮した解析、あるいは観測点を吟味して解析することが重要である。謝辞 F-netとDONETの観測記録(https://doi.org/10.17598/NIED.0005, https://doi.org/10.17598/NIED.0008)を利用しました。海洋研究開発機構の地球シミュレータを用いて地震動シミュレーションを行いました。本研究は、JSPS科研費19H04626の助成を受けて実施されました。
著者
高下 裕章 芦 寿一郎 朴 進午 宮川 歩夢 矢部 優
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

浅部プレート境界断層領域は防災上重要な研究の新領域として注目されている。プレート沈み込み帯では、沈み込みに伴いプレート境界面が固着している領域で歪が蓄積され、それが一気にずれて歪を解放、境界面が滑ることで地震が発生する。そのため、固着が強い地震発生帯と呼ばれる深部領域が、沈み込み帯の中では主な研究対象であった。一方、固着が弱く非地震性の定常すべり領域と考えられてきた浅部領域は、歪を多く蓄積せず、巨大なすべりを一度に開放することがないとされてきたため、これまで注目される機会が少なかった。2011年の東北地方太平洋沖地震では、海溝軸付近で最大約60 mの巨大な変位が地震時に発生したことが明らかになり、浅部プレート境界断層の破壊に関する初の観測事例となった。この破壊によって、巨大な津波が東北地方沿岸部の広い地域に甚大な被害をもたらされた。科学掘削の結果から浅部領域における断層部は摩擦の低い物質で構成されていることが明らかになったが、それがその領域だけなのか、もしくは日本海溝全体が同様の特徴を持つのかはわかっていないそこで本研究では、浅部プレート境界断層の摩擦係数の詳細な分布を明らかにし、上記の課題を解決するために、まず既存の研究手法Critical taper model (CTM)を改善し、新たな解析手法を開発した。CTMは沈み込み帯のウェッジにおいて力学的な条件を説明するのに重要な手法であり、ウェッジ形状を示す斜面傾斜角αとデコルマ傾斜角βから、プレート境界断層の摩擦係数を計算することができる。ただし、摩擦係数分布を得て、沈み込み帯の力学条件を議論するには、βの値の取り扱いについて大きな注意が必要であった。ベータは基本的に反射法地震探査断面から得るものであるが、その深度処理がβの値に大きな影響を与えることから数kmのオーダーであればPSDMのように高精度な深度処理が行われたものを、より広範囲を対象とした場合は屈折法を組み合わせ正確な速度構造を得たものでなければ、比較という点で信頼性を保つことが難しかった。本研究では、CTMを精査したところ、βがプレート境界断層の摩擦係数の算出にほとんど影響を与えないことが明らかになった。つまり、摩擦は斜面傾斜角αのパラメータのみで計算できることが明らかになった。αはグローバルに存在する水深測量データからも得ることができる。本手法を改めて日本海溝で得られている水深測量データに適用し、浅部プレート境界断層における高密度な摩擦分布を適用したところ、2011年東北沖地震の地震時すべり分布が低摩擦セグメントに対応することを示した。つまり、地震時の滑りが浅部プレート境界断層の浅い部分に伝播した際に、低摩擦領域にそのすべりを拡大し、巨大な津波につながった可能性を考えた。また、現在グローバルに摩擦分布を算出する手法を開発しており、その一部を紹介する。